-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathtrainingparameters.yaml
36 lines (29 loc) · 1.32 KB
/
trainingparameters.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# Description: Training parameters for the training script
# Model selection
model: 'FCMNIST' # 'FCMNIST' or 'CNNMNST' This is the class name of the model as defined in models.py.
# Quantization settings
QuantType: '4bitsym' # 'Ternary', 'Binary', 'BinaryBalanced', '2bitsym', '4bit', '4bitsym', '8bit', 'None", 'FP130', 'NF4'
NormType: 'RMS' # 'RMS', 'Lin', 'BatchNorm'
WScale: 'PerTensor' # 'PerTensor', 'PerOutput'
# Clipping parameters - only used for 2 bit and higher quantization
maxw_algo: 'octav' # 'octav', 'prop' Algorithm used to calculate the clipping parameters (maximum weight)
maxw_update_until_epoch: 60 # Update clipping parameters until this epoch, they are frozen afterwards
maxw_quantscale: 0.25 # Used only for clipping_algo='prop'. Determines the relation between stddev of weights and max_weight
# Learning parameters
num_epochs: 60
batch_size: 128
scheduler: "Cosine" # "StepLR", "Cosine"
learning_rate: 0.001
lr_decay: 0.1 # lr_decay and step size are not used with cosine scheduler
step_size: 10
# halve_lr_epoch: 30 # Epoch at which to halve the learning rate
# Data augmentation
augmentation: True
rotation1: 10 # rotation1 and rotation2 are used for data augmentation
rotation2: 10
# Model parameters
network_width1: 64
network_width2: 64
network_width3: 64
# name
runtag: "octav" # runtag is prefix for runname