@@ -239,43 +239,6 @@ def train_val_pipeline(MODEL_NAME, dataset, params, net_params, dirs):
239
239
print ("TOTAL TIME TAKEN: {:.4f}s" .format (time .time ()- t0 ))
240
240
print ("AVG TIME PER EPOCH: {:.4f}s" .format (np .mean (per_epoch_time )))
241
241
242
-
243
- if net_params ['pe_init' ] == 'rand_walk' :
244
- # Visualize actual and predicted/learned eigenvecs
245
- from utils .plot_util import plot_graph_eigvec
246
- if not os .path .exists (viz_dir ):
247
- os .makedirs (viz_dir )
248
-
249
- sample_graph_ids = [15 ,25 ,45 ]
250
-
251
- for f_idx , graph_id in enumerate (sample_graph_ids ):
252
-
253
- # Test graphs
254
- g_dgl = g_outs_test [graph_id ]
255
-
256
- f = plt .figure (f_idx , figsize = (12 ,6 ))
257
-
258
- plt1 = f .add_subplot (121 )
259
- plot_graph_eigvec (plt1 , graph_id , g_dgl , feature_key = 'eigvec' , actual_eigvecs = True )
260
-
261
- plt2 = f .add_subplot (122 )
262
- plot_graph_eigvec (plt2 , graph_id , g_dgl , feature_key = 'p' , predicted_eigvecs = True )
263
-
264
- f .savefig (viz_dir + '/test' + str (graph_id )+ '.jpg' )
265
-
266
- # Train graphs
267
- g_dgl = g_outs_train [graph_id ]
268
-
269
- f = plt .figure (f_idx , figsize = (12 ,6 ))
270
-
271
- plt1 = f .add_subplot (121 )
272
- plot_graph_eigvec (plt1 , graph_id , g_dgl , feature_key = 'eigvec' , actual_eigvecs = True )
273
-
274
- plt2 = f .add_subplot (122 )
275
- plot_graph_eigvec (plt2 , graph_id , g_dgl , feature_key = 'p' , predicted_eigvecs = True )
276
-
277
- f .savefig (viz_dir + '/train' + str (graph_id )+ '.jpg' )
278
-
279
242
writer .close ()
280
243
281
244
"""
0 commit comments