-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path110.isBalanced.py
70 lines (60 loc) · 1.59 KB
/
110.isBalanced.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Given a binary tree, determine if it is height-balanced.
#
#
# Example 1:
#
#
# Input: root = [3,9,20,null,null,15,7]
# Output: true
#
#
# Example 2:
#
#
# Input: root = [1,2,2,3,3,null,null,4,4]
# Output: false
#
#
# Example 3:
#
#
# Input: root = []
# Output: true
#
#
#
# Constraints:
#
#
# The number of nodes in the tree is in the range [0, 5000].
# -10⁴ <= Node.val <= 10⁴
#
#
# Related Topics Tree Depth-First Search Binary Tree 👍 10199 👎 608
from typing import Optional
# leetcode submit region begin(Prohibit modification and deletion)
# Definition for a binary tree node.
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
class Solution:
def isBalanced(self, root: Optional[TreeNode]) -> bool:
return self.get_height(root) != -1 # -1 means not balanced
def get_height(self, node: Optional[TreeNode]) -> int:
# post order (LRN) , loop left, right tree first since we need to get the height of the left and right first
if not node:
return 0
left_height = self.get_height(node.left)
# left tree not balanced
if left_height == -1:
return -1
right_height = self.get_height(node.right)
if right_height == -1:
return -1
# not balanced, return -1
if abs(left_height - right_height) > 1: return -1
# the parent height is the maximum of its children + 1
else: return max(left_height, right_height) + 1
# leetcode submit region end(Prohibit modification and deletion)