-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path117.populate_next_right_nodeII.py
132 lines (118 loc) · 3.35 KB
/
117.populate_next_right_nodeII.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Given a binary tree
#
#
# struct Node {
# int val;
# Node *left;
# Node *right;
# Node *next;
# }
#
#
# Populate each next pointer to point to its next right node. If there is no
# next right node, the next pointer should be set to NULL.
#
# Initially, all next pointers are set to NULL.
#
#
# Example 1:
#
#
# Input: root = [1,2,3,4,5,null,7]
# Output: [1,#,2,3,#,4,5,7,#]
# Explanation: Given the above binary tree (Figure A), your function should
# populate each next pointer to point to its next right node, just like in Figure B.
# The serialized output is in level order as connected by the next pointers, with
# '#' signifying the end of each level.
#
#
# Example 2:
#
#
# Input: root = []
# Output: []
#
#
#
# Constraints:
#
#
# The number of nodes in the tree is in the range [0, 6000].
# -100 <= Node.val <= 100
#
#
#
# Follow-up:
#
#
# You may only use constant extra space.
# The recursive approach is fine. You may assume implicit stack space does not
# count as extra space for this problem.
#
#
# Related Topics Linked List Tree Depth-First Search Breadth-First Search
# Binary Tree 👍 5659 👎 309
# leetcode submit region begin(Prohibit modification and deletion)
"""
# Definition for a Node.
class Node:
def __init__(self, val: int = 0, left: 'Node' = None, right: 'Node' = None, next: 'Node' = None):
self.val = val
self.left = left
self.right = right
self.next = next
"""
class Node:
def __init__(
self,
val: int = 0,
left: "Node" = None,
right: "Node" = None,
next: "Node" = None,
):
self.val = val
self.left = left
self.right = right
self.next = next
class Solution:
def print_queue(self, root: list) -> str:
res = ''
for e in root:
res += ',' + str(e.val)
return res
def connect(self, root: "Node") -> "Node":
# from the linked list for this level
if not root:
return root
# bfs, queue
# setting up the queue
q = [root]
while q:
size = len(q)
for i in range(size):
node = q.pop(0)
print(f"pop {node.val}")
# NOTE: connection happened in the first if statements
if i < size - 1: # if the queue has nodes after poping
print(f"link {node.val}->{q[0].val}")
# always point the left child to the right child since we add left first and pop the left first
node.next = q[0]
# track the sub child of this node in the queue
if node.left:
print(f"append subtree start at {node.left.val}")
q.append(node.left)
if node.right:
print(f"append subtree start at {node.right.val}")
q.append(node.right)
print(f"current queue: {self.print_queue(q)}")
print("=======")
# for next iteration, we will always deal with node on the same level if hasn't dealed yet
return root
# leetcode submit region end(Prohibit modification and deletion)
if __name__ == "__main__":
root = Node(
1, left=Node(2, left=Node(4), right=Node(5)), right=Node(3, right=Node(7))
)
s = Solution()
result = s.connect(root)
print(result)