Skip to content

Commit ac0ed07

Browse files
committed
docs: Update docs
1 parent 23ef916 commit ac0ed07

File tree

5 files changed

+5
-5
lines changed

5 files changed

+5
-5
lines changed

.github/workflows/ml_pipelines.yaml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -68,7 +68,7 @@ jobs:
6868
- uses: ./.github/actions/setup
6969

7070
- name: Run pipeline
71-
run: uv run ipython notebooks/4_fp_computing_item_embeddings.ipynb
71+
run: uv run ipython notebooks/4_ip_computing_item_embeddings.ipynb
7272
env:
7373
HOPSWORKS_API_KEY: ${{ secrets.HOPSWORKS_API_KEY }}
7474

INSTALL_AND_USAGE.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -81,7 +81,7 @@ You can also run each component separately:
8181
```
8282

8383
4. **Create Embeddings**
84-
Execute the embeddings computation Notebook (`notebooks/4_fp_computing_item_embeddings.ipynb`):
84+
Execute the embeddings computation Notebook (`notebooks/4_ip_computing_item_embeddings.ipynb`):
8585
```bash
8686
make create-embeddings
8787
```

Makefile

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@ train-ranking:
2222
uv run ipython notebooks/3_tp_training_ranking_model.ipynb
2323

2424
create-embeddings:
25-
uv run ipython notebooks/4_fp_computing_item_embeddings.ipynb
25+
uv run ipython notebooks/4_ip_computing_item_embeddings.ipynb
2626

2727
create-deployments:
2828
uv run ipython notebooks/5_ip_creating_deployments.ipynb

README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@
1414

1515
The **Hands-on H&M Real-Time Personalized Recommender”** is a free course that will teach you how to build and deploy a real-time personalized recommender for H&M fashion articles using the 4-stage recommender architecture, the two-tower model design and the Hopsworks AI Lakehouse.
1616

17-
You will learn:
17+
📙 **You will learn:**
1818

1919
- building a recommender using the 4-stage recommender architecture
2020
- training a two-tower model for generating users and item embeddings
@@ -57,7 +57,7 @@ At Decoding ML we teach how to build production ML systems, thus the course foll
5757
| 1 | [Building a TikTok-like recommender](https://decodingml.substack.com/p/33d3273e-b8e3-4d98-b160-c3d239343022) | Learn how to architect a recommender system using the 4-stage architecture and two-tower model. | - | - |
5858
| 2 | The feature pipeline | Learn how to build a scalable feature pipeline (WIP) | [1_fp_computing_features.ipynb](notebooks/1_fp_computing_features.ipynb) | - |
5959
| 3 | The training pipeline | Learn how to train and evaluate recommendation models (WIP) | [2_tp_training_retrieval_model.ipynb](notebooks/2_tp_training_retrieval_model.ipynb), [3_tp_training_ranking_model.ipynb](notebooks/3_tp_training_ranking_model.ipynb) | - |
60-
| 4 | The inference pipeline | Learn how to deploy models for real-time inference (WIP) | [4_fp_computing_item_embeddings.ipynb](notebooks/4_fp_computing_item_embeddings.ipynb), [5_ip_creating_deployments.ipynb](notebooks/5_ip_creating_deployments.ipynb), [6_scheduling_materialization_jobs.ipynb](notebooks/6_scheduling_materialization_jobs.ipynb) | - |
60+
| 4 | The inference pipeline | Learn how to deploy models for real-time inference (WIP) | [4_ip_computing_item_embeddings.ipynb](notebooks/4_ip_computing_item_embeddings.ipynb), [5_ip_creating_deployments.ipynb](notebooks/5_ip_creating_deployments.ipynb), [6_scheduling_materialization_jobs.ipynb](notebooks/6_scheduling_materialization_jobs.ipynb) | - |
6161
| 5 | Building personalized real-time recommenders with LLMs | Learn how to enhance recommendations with LLMs (WIP) | - | - |
6262

6363

0 commit comments

Comments
 (0)