|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [ |
| 8 | + { |
| 9 | + "data": { |
| 10 | + "text/html": [ |
| 11 | + "<div>\n", |
| 12 | + "<style scoped>\n", |
| 13 | + " .dataframe tbody tr th:only-of-type {\n", |
| 14 | + " vertical-align: middle;\n", |
| 15 | + " }\n", |
| 16 | + "\n", |
| 17 | + " .dataframe tbody tr th {\n", |
| 18 | + " vertical-align: top;\n", |
| 19 | + " }\n", |
| 20 | + "\n", |
| 21 | + " .dataframe thead th {\n", |
| 22 | + " text-align: right;\n", |
| 23 | + " }\n", |
| 24 | + "</style>\n", |
| 25 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 26 | + " <thead>\n", |
| 27 | + " <tr style=\"text-align: right;\">\n", |
| 28 | + " <th></th>\n", |
| 29 | + " <th>id</th>\n", |
| 30 | + " <th>neutral_venue</th>\n", |
| 31 | + " <th>result_margin</th>\n", |
| 32 | + " <th>method</th>\n", |
| 33 | + " </tr>\n", |
| 34 | + " </thead>\n", |
| 35 | + " <tbody>\n", |
| 36 | + " <tr>\n", |
| 37 | + " <th>count</th>\n", |
| 38 | + " <td>2.100000e+01</td>\n", |
| 39 | + " <td>21.0</td>\n", |
| 40 | + " <td>20.000000</td>\n", |
| 41 | + " <td>0.0</td>\n", |
| 42 | + " </tr>\n", |
| 43 | + " <tr>\n", |
| 44 | + " <th>mean</th>\n", |
| 45 | + " <td>1.254068e+06</td>\n", |
| 46 | + " <td>0.0</td>\n", |
| 47 | + " <td>14.100000</td>\n", |
| 48 | + " <td>NaN</td>\n", |
| 49 | + " </tr>\n", |
| 50 | + " <tr>\n", |
| 51 | + " <th>std</th>\n", |
| 52 | + " <td>6.204837e+00</td>\n", |
| 53 | + " <td>0.0</td>\n", |
| 54 | + " <td>17.001238</td>\n", |
| 55 | + " <td>NaN</td>\n", |
| 56 | + " </tr>\n", |
| 57 | + " <tr>\n", |
| 58 | + " <th>min</th>\n", |
| 59 | + " <td>1.254058e+06</td>\n", |
| 60 | + " <td>0.0</td>\n", |
| 61 | + " <td>2.000000</td>\n", |
| 62 | + " <td>NaN</td>\n", |
| 63 | + " </tr>\n", |
| 64 | + " <tr>\n", |
| 65 | + " <th>25%</th>\n", |
| 66 | + " <td>1.254063e+06</td>\n", |
| 67 | + " <td>0.0</td>\n", |
| 68 | + " <td>6.000000</td>\n", |
| 69 | + " <td>NaN</td>\n", |
| 70 | + " </tr>\n", |
| 71 | + " <tr>\n", |
| 72 | + " <th>50%</th>\n", |
| 73 | + " <td>1.254068e+06</td>\n", |
| 74 | + " <td>0.0</td>\n", |
| 75 | + " <td>8.000000</td>\n", |
| 76 | + " <td>NaN</td>\n", |
| 77 | + " </tr>\n", |
| 78 | + " <tr>\n", |
| 79 | + " <th>75%</th>\n", |
| 80 | + " <td>1.254073e+06</td>\n", |
| 81 | + " <td>0.0</td>\n", |
| 82 | + " <td>10.750000</td>\n", |
| 83 | + " <td>NaN</td>\n", |
| 84 | + " </tr>\n", |
| 85 | + " <tr>\n", |
| 86 | + " <th>max</th>\n", |
| 87 | + " <td>1.254078e+06</td>\n", |
| 88 | + " <td>0.0</td>\n", |
| 89 | + " <td>69.000000</td>\n", |
| 90 | + " <td>NaN</td>\n", |
| 91 | + " </tr>\n", |
| 92 | + " </tbody>\n", |
| 93 | + "</table>\n", |
| 94 | + "</div>" |
| 95 | + ], |
| 96 | + "text/plain": [ |
| 97 | + " id neutral_venue result_margin method\n", |
| 98 | + "count 2.100000e+01 21.0 20.000000 0.0\n", |
| 99 | + "mean 1.254068e+06 0.0 14.100000 NaN\n", |
| 100 | + "std 6.204837e+00 0.0 17.001238 NaN\n", |
| 101 | + "min 1.254058e+06 0.0 2.000000 NaN\n", |
| 102 | + "25% 1.254063e+06 0.0 6.000000 NaN\n", |
| 103 | + "50% 1.254068e+06 0.0 8.000000 NaN\n", |
| 104 | + "75% 1.254073e+06 0.0 10.750000 NaN\n", |
| 105 | + "max 1.254078e+06 0.0 69.000000 NaN" |
| 106 | + ] |
| 107 | + }, |
| 108 | + "execution_count": 1, |
| 109 | + "metadata": {}, |
| 110 | + "output_type": "execute_result" |
| 111 | + } |
| 112 | + ], |
| 113 | + "source": [ |
| 114 | + "import pandas as pd\n", |
| 115 | + "from pandas_profiling import ProfileReport\n", |
| 116 | + "\n", |
| 117 | + "df = pd.read_csv('IPL Matches Dataset 2021.csv')\n", |
| 118 | + "#df.head()\n", |
| 119 | + "#df.shape\n", |
| 120 | + "\n", |
| 121 | + "df.describe()\n", |
| 122 | + "#profile = ProfileReport(df)\n", |
| 123 | + "#profile.to_file(output_file=\"covid_19_clean_complete.html\")" |
| 124 | + ] |
| 125 | + }, |
| 126 | + { |
| 127 | + "cell_type": "code", |
| 128 | + "execution_count": 2, |
| 129 | + "metadata": {}, |
| 130 | + "outputs": [ |
| 131 | + { |
| 132 | + "name": "stdout", |
| 133 | + "output_type": "stream", |
| 134 | + "text": [ |
| 135 | + "<class 'pandas.core.frame.DataFrame'>\n", |
| 136 | + "RangeIndex: 21 entries, 0 to 20\n", |
| 137 | + "Data columns (total 17 columns):\n", |
| 138 | + " # Column Non-Null Count Dtype \n", |
| 139 | + "--- ------ -------------- ----- \n", |
| 140 | + " 0 id 21 non-null int64 \n", |
| 141 | + " 1 city 21 non-null object \n", |
| 142 | + " 2 date 21 non-null object \n", |
| 143 | + " 3 player_of_match 21 non-null object \n", |
| 144 | + " 4 venue 21 non-null object \n", |
| 145 | + " 5 neutral_venue 21 non-null int64 \n", |
| 146 | + " 6 team1 21 non-null object \n", |
| 147 | + " 7 team2 21 non-null object \n", |
| 148 | + " 8 toss_winner 21 non-null object \n", |
| 149 | + " 9 toss_decision 21 non-null object \n", |
| 150 | + " 10 winner 21 non-null object \n", |
| 151 | + " 11 result 21 non-null object \n", |
| 152 | + " 12 result_margin 20 non-null float64\n", |
| 153 | + " 13 eliminator 21 non-null object \n", |
| 154 | + " 14 method 0 non-null float64\n", |
| 155 | + " 15 umpire1 21 non-null object \n", |
| 156 | + " 16 umpire2 21 non-null object \n", |
| 157 | + "dtypes: float64(2), int64(2), object(13)\n", |
| 158 | + "memory usage: 2.9+ KB\n" |
| 159 | + ] |
| 160 | + } |
| 161 | + ], |
| 162 | + "source": [ |
| 163 | + "df.info()" |
| 164 | + ] |
| 165 | + }, |
| 166 | + { |
| 167 | + "cell_type": "code", |
| 168 | + "execution_count": null, |
| 169 | + "metadata": {}, |
| 170 | + "outputs": [], |
| 171 | + "source": [] |
| 172 | + } |
| 173 | + ], |
| 174 | + "metadata": { |
| 175 | + "interpreter": { |
| 176 | + "hash": "2e26d2f57d00b66bbacd66603027255515b714fe2db5cd0739a98c8dd623e8a9" |
| 177 | + }, |
| 178 | + "kernelspec": { |
| 179 | + "display_name": "Python 3.9.7 64-bit", |
| 180 | + "language": "python", |
| 181 | + "name": "python3" |
| 182 | + }, |
| 183 | + "language_info": { |
| 184 | + "codemirror_mode": { |
| 185 | + "name": "ipython", |
| 186 | + "version": 3 |
| 187 | + }, |
| 188 | + "file_extension": ".py", |
| 189 | + "mimetype": "text/x-python", |
| 190 | + "name": "python", |
| 191 | + "nbconvert_exporter": "python", |
| 192 | + "pygments_lexer": "ipython3", |
| 193 | + "version": "3.9.7" |
| 194 | + }, |
| 195 | + "orig_nbformat": 4 |
| 196 | + }, |
| 197 | + "nbformat": 4, |
| 198 | + "nbformat_minor": 2 |
| 199 | +} |
0 commit comments