-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFiniteSubset.agda
181 lines (123 loc) · 5.85 KB
/
FiniteSubset.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
module FiniteSubset where
open import Relation.Binary.PropositionalEquality hiding (inspect)
open import Relation.Binary.Core
open import Relation.Nullary
open import Data.Product hiding (map)
open import Data.List
open import Data.Empty
open import Data.Unit hiding (_≟_)
open import Data.Sum hiding (map)
open import Data.Nat
open import Data.Bool
open import Function
open import Utilities.Logic
open import Utilities.ListProperties
open import Utilities.NatProperties
open import Finiteness
data FiniteSubSet (X : Set) (eq : DecEq X) : Bool → Set where
fs-plain : List X → FiniteSubSet X eq true
fs-nojunk : (els : List X) → {nd : ∥ nodupDec eq els ∥}
→ FiniteSubSet X eq false
FSS : Set₁
FSS = Σ[ X ∈ Set ] Σ[ eq ∈ DecEq X ] Σ[ b ∈ Bool ] FiniteSubSet X eq b
listOf : {X : Set}{eq : DecEq X}{b : Bool} → FiniteSubSet X eq b → List X
listOf (fs-plain x) = x
listOf (fs-nojunk els) = els
open import Utilities.ListsAddition
fromList : {X : Set}{eq : DecEq X} → List X → (b : Bool) → FiniteSubSet X eq b
fromList xs true = fs-plain xs
fromList {eq = eq} xs false = fs-nojunk (remDup (eq2in eq) xs)
{∥-∥-prop2 (remDupCorrect (eq2in eq) xs) _}
Element : {X : Set}{eq : DecEq X}{b : Bool} → FiniteSubSet X eq b → Set
Element {X} {eq} f = Σ[ x ∈ X ] ∥ eq2in eq x (listOf f) ∥
-- this equality is more efficient, than the one you can get from fsListable
fsEq : {C : Set}{eq : DecEq C}{b : Bool}
→ (se : FiniteSubSet C eq b) → DecEq (Element se)
fsEq {eq = eq} se (e1 , e2) (e3 , e4) with eq e1 e3
fsEq {eq = eq} se (e1 , e2) (.e1 , e4) | yes refl
rewrite ∥-∥-prop (eq2in eq e1 (listOf se)) e2 e4 = yes refl
fsEq {eq = eq} se (e1 , e2) (e3 , e4) | no ¬p
= no (λ p → ¬p (cong proj₁ p))
fsListable : {X : Set} → {eq : DecEq X} → {b : Bool} → (fs : FiniteSubSet X eq b)
→ Listable (Element fs)
fsListable {eq = eq} fs = let x = listOf fs in
map-in x (λ { (p1 , p2) → p1 , ∥-∥-prop2 p2 (eq2in eq p1 x) } ) , hlp
where
hlp : All (map-in (listOf fs) (λ { (p1 , p2) → p1 ,
∥-∥-prop2 p2 (eq2in eq p1 (listOf fs)) } ))
hlp (xe , pe) with map-in-pr (listOf fs)
(λ { (p1 , p2) → p1 , ∥-∥-prop2 p2 (eq2in eq p1 (listOf fs)) } ) xe (∥-∥-prop3 _ pe)
... | o1 , o2 rewrite ∥-∥-prop _ pe (∥-∥-prop2 o1 (eq2in eq xe (listOf fs))) = o2
elementsOf : {X : Set} → {eq : DecEq X} → {b : Bool} → (fs : FiniteSubSet X eq b)
→ List (Element fs)
elementsOf fs = proj₁ $ fsListable fs
elementsOfComplete : {X : Set} → {eq : DecEq X} → {b : Bool} → (fs : FiniteSubSet X eq b)
→ (e : Element fs) → e ∈ elementsOf fs
elementsOfComplete fs e = proj₂ (fsListable fs) e
ndlft : {X : Set} → (xs : List X) → NoDupInd xs → NoDupInd (lft xs)
ndlft .[] end = end
ndlft {X} (x ∷ xs) (x₁ ::: nd) = hlp1 ::: nd2' _ (lft _) hlp2 (ndlft _ nd)
where
∈b : ∀{a} → {X : Set a} → (y1 y2 : X) → (ys : List X) → (p1 p2 : y1 ∈ ys)
→ (_,_ {a} {a} {X} {λ x → x ∈ (y2 ∷ ys)} y1 ((there {a} {X} {y1} {y2} {ys} p1))) ≡
((y1 , there {a} {X} {y1} {y2} {ys} p2)) → p1 ≡ p2
∈b y1 y ys p1 .p1 refl = refl
hlp2 : (y1 y2 : Σ[ x ∈ X ] x ∈ xs) →
(proj₁ y1 , there (proj₂ y1)) ≡ (proj₁ y2 , there (proj₂ y2)) →
y1 ≡ y2
hlp2 (y1 , pr1) (y2 , pr2) pr with cong proj₁ pr
hlp2 (y1 , pr1) (y2 , pr2) pr | o rewrite o | ∈b y2 _ _ pr1 pr2 pr = refl
hlp1 : ¬
(x , here ) ∈ map (λ ep → proj₁ ep , there (proj₂ ep)) (lft xs)
hlp1 pr with map∃' (x , here) _ (lft xs) pr
hlp1 pr | o1 , o2 , ()
mapnod : {X Y : Set} → (els : List X)
→ (f : Σ[ e ∈ X ] e ∈ els → Y)
→ (∀ x1 x2 → f x1 ≡ f x2 → x1 ≡ x2)
→ NoDupInd els
→ NoDupInd (map-in els f)
mapnod xs f ft nd = nd2' f (lft xs) ft (ndlft xs nd)
elementsOfNoDup : {X : Set} → {eq : DecEq X} → {b : Bool} → (fs : FiniteSubSet X eq false)
→ NoDupInd (elementsOf fs)
elementsOfNoDup {X} {eq} (fs-nojunk els {nd}) with NoDupInd-corr2 _ (∥-∥-prop3 _ nd)
... | o = mapnod els (λ { (p1 , p2) → p1 , ∥-∥-prop2 p2 (eq2in eq p1 els) } ) z o
where
z : (x1 x2 : Σ X (λ e → e ∈ els)) →
(proj₁ x1 , ∥-∥-prop2 (proj₂ x1) (eq2in eq (proj₁ x1) els)) ≡
(proj₁ x2 , ∥-∥-prop2 (proj₂ x2) (eq2in eq (proj₁ x2) els)) →
x1 ≡ x2
z (e1 , e1p) (e2 , e2p) pr with cong proj₁ pr
z (e1 , e1p) (.e1 , e2p) pr | refl
rewrite NoDupInd-pr e1 els e1p e2p o = refl
-- monad
open import Utilities.ListMonad renaming (return to returnm)
return : {X : Set}{eq : DecEq X}{b : Bool} → X → FiniteSubSet X eq b
return {b = true} x = fs-plain (x ∷ [])
return {b = false} x = fs-nojunk (x ∷ []) {tt}
bind : {X Y : Set}{eqx : DecEq X}{eqy : DecEq Y}{b1 b2 : Bool}
→ FiniteSubSet X eqx b1
→ (X → FiniteSubSet Y eqy b2 )
→ (b : Bool)
→ FiniteSubSet Y eqy b
bind f c = fromList $ (listOf f) >>= (λ x → listOf $ c x)
mzero : {X : Set}{eq : DecEq X}{b : Bool} → FiniteSubSet X eq b
mzero {b = false} = fs-nojunk []
mzero {b = true} = fs-plain []
if_then_ : {X : Set}{eq : DecEq X}{b : Bool}
→ Bool → FiniteSubSet X eq b
→ FiniteSubSet X eq b
if b then c = if b then c else mzero
syntax bind A (λ x → B) b = for x ∈ A as b do: B
open import Relation.Nullary.Decidable
open import Function
_∩_ : {C : Set}{eq : DecEq C} {b1 b2 : Bool}
→ FiniteSubSet C eq b1 → FiniteSubSet C eq b2
→ FiniteSubSet C eq (b1 ∧ b2)
_∩_ {C} {eq = _==_} {b1} {b2} X Y =
for x ∈ X as _ do:
for y ∈ Y as true do:
if ⌊ x == y ⌋ then return {b = true} x
_∪_ : {C : Set}{eq : DecEq C} {b1 b2 : Bool}
→ FiniteSubSet C eq b1 → FiniteSubSet C eq b2
→ FiniteSubSet C eq (b1 ∧ b2)
_∪_ {C} {eq = _==_} {b1} {b2} X Y = fromList (listOf X ++ listOf Y) _