-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathExtractabilityEquations.ec
709 lines (610 loc) · 22.1 KB
/
ExtractabilityEquations.ec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
pragma Goals:printall.
require import AllCore Distr List Binomial.
require import Ring StdRing StdOrder StdBigop Discrete RealSeq RealSeries RealLub.
(*---*) import IterOp Bigint Bigreal Bigreal.BRA.
(*---*) import IntOrder RealOrder RField.
require (*--*) FinType.
require import Averaging DProd RewWithInit AuxResults.
require import RealExp.
theory AveragingAux.
type ct,rt,pt.
op d : ct distr.
op allcs : ct list.
op cartprod2 (l : 'a list) = allpairs (fun c1 c2 => (c1,c2)) l l.
axiom allcs_uniq : uniq allcs.
axiom allcs_all x : mu1 d x <> 0%r => x \in allcs.
module type Comp = {
proc rest (p : pt, c1c2 : ct * ct) : rt
}.
module type Run = {
proc run (p : pt, c : ct) : rt
}.
(* parallel sampling *)
module Xpar(C : Comp) = {
proc run(p : pt) = {
var c1c2, r;
c1c2 <$ d `*` d;
r <@ C.rest(p,c1c2);
return (c1c2,r);
}
}.
(* sequential sampling *)
module Xseq(C : Comp) = {
proc run(p : pt) = {
var c1,c2, r;
c1 <$ d;
c2 <$ d;
r <@ C.rest(p,(c1,c2));
return ((c1,c2),r);
}
}.
section.
local clone import ProdSampling with type t1 <- ct,
type t2 <- ct.
local clone import Avg as A with type at <- ct * ct,
type at2 <- pt,
type rt <- (ct * ct) * rt.
local module C'(C : Comp) = {
proc main(c1c2:ct*ct,i2 : pt) = {
var r;
r <@ C.rest(i2,c1c2);
return (c1c2,r);
}
}.
local lemma avr &m M p: forall (C <: Comp),
Pr[ Xpar(C).run(p) @ &m : M res ]
= sum (fun c1c2 =>
(mu1 (d `*` d) c1c2) * Pr[ C.rest(p,c1c2) @ &m : M (c1c2,res) ]).
progress.
have ->: Pr[Xpar(C).run(p) @ &m : M res] = Pr[WorkAvg(C'(C)).main(d `*` d, p) @ &m : M res.`1].
byequiv. proc. inline*. wp. call (_:true).
wp. rnd. wp. skip. progress. auto. auto.
rewrite (averaging (C'(C))).
have ->: (fun (x : ct * ct) => mu1 (d `*` d) x * Pr[C'(C).main(x, p) @ &m : M res])
= (fun (c1c2 : ct * ct) =>
mu1 (d `*` d) c1c2 * Pr[C.rest(p, c1c2) @ &m : M (c1c2, res)]).
apply fun_ext. move => x.
have ->: Pr[C'(C).main(x, p) @ &m : M res] = Pr[C.rest(p, x) @ &m : M (x, res)].
byequiv. proc*. inline*. wp. sp. call (_:true). skip. progress. auto. auto.
auto. auto.
qed.
local module X'(C : Comp) = {
proc run(p : pt) = {
var c1c2, r;
c1c2 <@ S.sample(d,d);
r <@ C.rest(p,c1c2);
return (c1c2,r);
}
}.
local module Xseq'(C : Comp) = {
proc run(p : pt) = {
var c1,c2, r;
(c1,c2) <@ S.sample2(d,d);
r <@ C.rest(p,(c1,c2));
return ((c1,c2),r);
}
}.
declare module C <: Comp.
local lemma x_xseq &m M p:
Pr[Xpar(C).run(p) @ &m : M p res] = Pr[Xseq(C).run(p) @ &m : M p res].
have ->: Pr[Xpar(C).run(p) @ &m : M p res]
= Pr[X'(C).run(p) @ &m : M p res]. byequiv. proc. inline*.
sp. call (_:true). wp. rnd. skip. progress. auto. auto.
have ->: Pr[Xseq(C).run(p) @ &m : M p res]
= Pr[Xseq'(C).run(p) @ &m : M p res]. byequiv. proc. inline*.
sp. call (_:true). wp. rnd. rnd. skip. progress. auto. auto.
byequiv. proc.
seq 1 1 : (={glob C,p} /\ (c1c2{1} = (c1,c2){2})).
call sample_sample2. skip. progress. smt().
call (_:true). skip. progress. auto. auto.
qed.
local lemma avr_lemma_1 &m M p :
Pr[ Xpar(C).run(p) @ &m : M res ]
= big predT (fun c1c2 =>
(mu1 (d `*` d) c1c2) * Pr[ C.rest(p,c1c2) @ &m : M (c1c2,res) ])
(allpairs (fun c1 c2 => (c1,c2)) allcs allcs) .
proof. rewrite - sumE_fin. apply allpairs_uniq. apply allcs_uniq. apply allcs_uniq. smt().
progress.
apply allpairsP. exists x. progress.
have : mu1 d x.`1 <> 0%r. smt(@Distr).
apply allcs_all.
apply allcs_all. smt(@Distr).
smt().
apply (avr _ _ _ C).
qed.
local lemma avr_lemma_2 &m M p :
big predT (fun c1c2 =>
(mu1 (d `*` d) c1c2) * Pr[ C.rest(p,c1c2) @ &m : M (c1c2,res) ])
(allpairs (fun c1 c2 => (c1,c2)) allcs allcs)
= big predT (fun (c1c2 : ct * ct) =>
((mu1 d c1c2.`1) * (mu1 d c1c2.`2)) * Pr[ C.rest(p,c1c2) @ &m : M (c1c2,res) ])
(allpairs (fun c1 c2 => (c1,c2)) allcs allcs).
apply eq_big. auto.
progress.
rewrite - dprod1E. smt().
qed.
local lemma avr_lemma_3 &m M N p f l :
big predT (fun (c1c2 : ct * ct) =>
(f c1c2) * Pr[ C.rest(p,c1c2) @ &m : N c1c2 /\ M (c1c2,res) ]) l
= big N (fun (c1c2 : ct * ct) =>
(f c1c2) * Pr[ C.rest(p,c1c2) @ &m : M (c1c2,res) ]) l.
rewrite (big_mkcond N).
apply eq_big.
auto. simplify. progress.
case (N i). auto.
simplify. rewrite Pr[mu_false]. simplify. auto.
qed.
local lemma avr_lemma_4 &m M p :
Pr[ Xpar(C).run(p) @ &m : res.`1.`1 <> res.`1.`2 /\ M res ]
= big (fun (r : ct * ct) => r.`1 <> r.`2)
(fun (c1c2 : ct * ct) =>
((mu1 d c1c2.`1) * (mu1 d c1c2.`2)) *
Pr[ C.rest(p,c1c2) @ &m : M (c1c2,res) ])
(cartprod2 allcs).
rewrite (avr_lemma_1 &m (fun r => (fst (fst r)) <> (snd (fst r)) /\ M r ) ).
simplify.
rewrite (avr_lemma_2 &m (fun r => (fst (fst r)) <> (snd (fst r)) /\ M r )).
simplify.
rewrite - avr_lemma_3.
simplify. auto.
qed.
local lemma avr_lemma_5 &m M p :
Pr[ Xpar(C).run(p) @ &m : res.`1.`1 <> res.`1.`2 /\ M res ]
= big predT (fun (c1c2 : ct * ct) =>
((mu1 d c1c2.`1) * (mu1 d c1c2.`2)) *
Pr[ C.rest(p,c1c2) @ &m : M (c1c2,res) ])
(cartprod2 allcs)
- big (fun r => fst r = snd r) (fun (c1c2 : ct * ct) =>
((mu1 d c1c2.`1) * (mu1 d c1c2.`2)) *
Pr[ C.rest(p,c1c2) @ &m : M (c1c2,res) ])
(cartprod2 allcs).
rewrite (bigEM (fun (r : ct * ct) => r.`1 = r.`2)).
rewrite /predC. rewrite avr_lemma_4.
have f : forall (a b : real), a = b + a - b. smt().
apply f.
qed.
local lemma avr_lemma_6 &m M p :
Pr[ Xpar(C).run(p) @ &m : res.`1.`1 <> res.`1.`2 /\ M res ]
= Pr[ Xpar(C).run(p) @ &m : M res ]
- big (fun r => fst r = snd r) (fun (c1c2 : ct * ct) =>
((mu1 d c1c2.`1) * (mu1 d c1c2.`2)) *
Pr[ C.rest(p,c1c2) @ &m : M (c1c2,res) ])
(cartprod2 allcs).
rewrite avr_lemma_1.
rewrite avr_lemma_2.
apply avr_lemma_5.
qed.
lemma avr_lemma_seq &m M p :
Pr[ Xseq(C).run(p) @ &m : res.`1.`1 <> res.`1.`2 /\ M res ]
= Pr[ Xseq(C).run(p) @ &m : M res ]
- big (fun r => fst r = snd r) (fun (c1c2 : ct * ct) =>
((mu1 d c1c2.`1) * (mu1 d c1c2.`2)) *
Pr[ C.rest(p,c1c2) @ &m : M (c1c2,res) ])
(cartprod2 allcs).
rewrite - (x_xseq &m (fun p (r : (ct * ct) * rt) => r.`1.`1 <> r.`1.`2 /\ M r) ). simplify.
rewrite - (x_xseq &m (fun p (r : (ct * ct) * rt) => M r) ). simplify.
rewrite avr_lemma_1.
rewrite avr_lemma_2.
apply avr_lemma_5.
qed.
end section.
end AveragingAux.
theory ExtractabilityEquationsTheory.
type ct, pt, rt, irt, auxt, sbits.
op d : ct distr.
axiom duni : is_uniform d.
axiom dll : is_lossless d.
op allcs : ct list.
axiom allcs_uniq : uniq allcs.
axiom allcs_all x : mu1 d x <> 0%r => x \in allcs.
axiom ss c : c \in allcs => mu1 d c = 1%r/(size allcs)%r.
clone import AveragingAux as BP with type ct <- ct,
type pt <- pt * auxt,
type rt <- (rt * irt) * (rt * irt),
op d <- d,
op allcs <- allcs
proof*.
realize allcs_uniq. apply allcs_uniq. qed.
realize allcs_all. apply allcs_all. qed.
clone import RWI with type sbits <- sbits,
type iat <- pt * auxt,
type irt <- irt,
type rrt <- ct * rt.
module type Adv = {
proc init(p : pt, aux : auxt) : irt
proc run(i : irt, c : ct) : rt
proc getState() : sbits
proc setState(b : sbits) : unit
}.
module InitRun2(A : Adv) = {
proc run(a : pt, aux : auxt) = {
var i, c1, c2, r1, r2, pstate;
i <@ A.init(a,aux);
c1 <$ d;
pstate <@ A.getState();
r1 <@ A.run(i,c1);
c2 <$ d;
A.setState(pstate);
r2 <@ A.run(i,c2);
return ((c1,(r1,i)),(c2,(r2,i)));
}
}.
module InitRun1(A : Adv) = {
proc run(a : pt, aux : auxt) = {
var i, c1, r1;
i <@ A.init(a,aux);
c1 <$ d;
r1 <@ A.run(i,c1);
return (c1,(r1,i));
}
}.
section.
declare module A <: Adv.
declare axiom A_ll : islossless A.run.
declare axiom A_init_ll : islossless A.init.
declare axiom rewindable_A_plus :
exists (f : glob A -> sbits),
injective f /\
(forall (x : glob A),
phoare[ A.getState : (glob A) = x ==> (glob A) = x /\ res = f x ] = 1%r) /\
(forall (x : glob A),
hoare[ A.getState : (glob A) = x ==> (glob A) = x /\ res = f x ]) /\
islossless A.getState /\
(forall (x: glob A),
phoare[A.setState: b = f x ==> glob A = x] = 1%r) /\
(forall (x: glob A),
hoare[A.setState: b = f x ==> glob A = x]) /\
islossless A.setState.
local module C2 : Comp = {
proc rest(p : pt * auxt, c1c2 : ct * ct) : (rt * irt) * (rt * irt) = {
var r1, r2,i, pstate;
i <@ A.init(p);
pstate <@ A.getState();
r1 <@ A.run(i,c1c2.`1);
A.setState(pstate);
r2 <@ A.run(i,c1c2.`2);
return ((r1,i),(r2,i));
}
}.
local module C1 = {
proc main(c1 : ct, p : pt * auxt) : rt * irt = {
var r1,i;
i <@ A.init(p);
r1 <@ A.run(i,c1);
return (r1,i);
}
}.
local module C1' = {
proc main(c1 : ct, p : pt * auxt) : (ct * (rt * irt)) = {
var r1,i;
i <@ A.init(p);
r1 <@ A.run(i,c1);
return (c1,(r1,i));
}
}.
local module X1 = {
proc run(p : pt * auxt) = {
var c,r;
c <$ d;
r <@ C1.main(c,p);
return (c,r);
}
}.
local module A' = {
proc run(i: irt) = {
var c, r;
c <$ d;
r <@ A.run(i,c);
return (c,r);
}
proc init = A.init
proc getState = A.getState
proc setState = A.setState
}.
(* averaging *)
clone import Avg as A with type at <- ct,
type at2 <- pt * auxt,
type rt <- ct * (rt * irt).
local lemma x0 &m M p :
big predT (fun (c : ct) => mu1 d c * Pr[C1.main(c,p) @ &m : M p (c, res)]) allcs =
Pr[X1.run(p) @ &m : M p (res.`1, res.`2)].
have ->: Pr[X1.run(p) @ &m : M p (res.`1, res.`2)]
= Pr[WorkAvg(C1').main(d,p) @ &m : M p res.`1].
byequiv. proc. sp.
inline*. wp.
call (_:true). call (_:true).
wp.
rnd. skip. progress. auto. auto.
rewrite (averaging C1' &m (M p) p d).
rewrite - sumE_fin. apply allcs_uniq.
smt(allcs_all).
have ->:
(fun (c : ct) => mu1 d c * Pr[C1.main(c, p) @ &m : M p (c, res)]) =
(fun (x : ct) => mu1 d x * Pr[C1'.main(x, p) @ &m : M p res]).
apply fun_ext. move => x.
have ->: Pr[C1.main(x, p) @ &m : M p (x, res)] = Pr[C1'.main(x, p) @ &m : M p res].
byequiv. proc. call (_:true). call (_:true). skip.
progress. auto. auto. auto. auto.
qed.
(* sum binding *)
local lemma x2 &m M p:
Pr[X1.run(p) @ &m : M p (res.`1, res.`2)] ^ 2 <=
Pr[Xseq(C2).run(p) @ &m : M p (res.`1.`1, res.`2.`1) /\ M p (res.`1.`2, res.`2.`2)].
have ->: Pr[X1.run(p) @ &m : M p (res.`1, res.`2)]
= Pr[ QQ(A',A').main_run(p) @ &m : M p (res.`2.`1, (res.`2.`2, res.`1)) ].
byequiv. proc. inline*. swap {2} 3 -2. wp.
call (_:true). wp. call (_:true). wp. rnd. skip.
progress. auto. auto.
have ->:
Pr[Xseq(C2).run(p) @ &m :
M p (res.`1.`1, res.`2.`1) /\ M p (res.`1.`2, res.`2.`2)]
= Pr[ QQ(A',A').main(p) @ &m : M p (res.`1.`2.`1, (res.`1.`2.`2, res.`1.`1))
/\ M p (res.`2.`2.`1, (res.`2.`2.`2, res.`2.`1)) ] .
byequiv. proc. inline*. swap {2} 4 -3. swap {2} 9 -7. wp.
call (_:true). wp. call (_:true). wp. call (_:true).
wp. call (_:true). call (_:true). wp. rnd. rnd. skip. progress.
auto. auto.
apply (rew_with_init A' A' _ _ _ _ &m (fun (r : irt * (ct * rt)) => M p (r.`2.`1, (r.`2.`2, r.`1)) )).
proc*. sim. proc*. sim.
elim rewindable_A_plus. progress.
exists f. progress.
byphoare (_: (glob A) = (glob A){m0} ==> _). apply H0. auto. auto.
byphoare (_: arg = f x ==> _). conseq (H3 x). auto. auto. auto.
(* proc. call A_ll. rnd. skip. smt(dll). *)
conseq A_init_ll.
qed.
local lemma avr_lemma_6_app &m M p :
Pr[ Xseq(C2).run(p) @ &m : res.`1.`1 <> res.`1.`2 /\ M p res ]
= Pr[ Xseq(C2).run(p) @ &m : M p res ]
- big (fun r => fst r = snd r) (fun (c1c2 : ct * ct) =>
((mu1 d c1c2.`1) * (mu1 d c1c2.`2)) *
Pr[ C2.rest(p,c1c2) @ &m : M p (c1c2,res) ])
(cartprod2 allcs).
rewrite (avr_lemma_seq C2 &m (M p) p). auto.
qed.
local lemma avr_lemma_7_app &m M p c:
Pr[ C2.rest(p,(c,c)) @ &m : M p (c, res.`1) /\ M p (c, res.`2) ]
<= Pr[ C1.main(c,p) @ &m : M p (c, res) ].
byequiv.
proc.
elim rewindable_A_plus.
move => fA [s1 [s2 [s2h [s2ll [s3 [s3h ]]]] ]] s3ll.
seq 1 1 : ((c1{2}, p) = (c, p) /\
(p, c1c2{1}) = (p, (c, c)) /\ (glob A){1} = (glob A){2} /\ ={i}).
call (_:true). skip. progress.
seq 2 1 : (={glob A,i,r1}).
exists* (glob A){2}. elim*. progress.
call (_:true).
call {1} (s2 A_R). skip. progress.
call {1} (_: true ==> true). apply A_ll. call {1} s3ll.
auto. auto. auto.
qed.
local lemma avr_lemma_8_app &m M p :
Pr[ Xseq(C2).run(p) @ &m : res.`1.`1 <> res.`1.`2 /\ M p (res.`1.`1, res.`2.`1)
/\ M p (res.`1.`2, res.`2.`2) ]
>= Pr[ Xseq(C2).run(p) @ &m : M p (res.`1.`1, res.`2.`1) /\ M p (res.`1.`2, res.`2.`2) ]
- big (fun r => fst r = snd r) (fun (c1c2 : ct * ct) =>
((mu1 d c1c2.`1) * (mu1 d c1c2.`2)) *
Pr[ C1.main(c1c2.`1,p) @ &m : M p (c1c2.`1, res) ])
(cartprod2 allcs).
rewrite (avr_lemma_6_app &m (fun p (r : (ct * ct) * ((rt * irt) * (rt * irt)))
=> M p (r.`1.`1, r.`2.`1) /\ M p (r.`1.`2, r.`2.`2))).
simplify.
have f2 : big (fun (r : ct * ct) => r.`1 = r.`2)
(fun (c1c2 : ct * ct) =>
mu1 d c1c2.`1 * mu1 d c1c2.`2 *
Pr[C2.rest(p, c1c2) @ &m : M p (c1c2.`1, res.`1) /\ M p (c1c2.`2, res.`2)])
(cartprod2 allcs) <=
big (fun (r : ct * ct) => r.`1 = r.`2)
(fun (c1c2 : ct * ct) =>
mu1 d c1c2.`1 * mu1 d c1c2.`2 *
Pr[C1.main(c1c2.`1,p) @ &m : M p (c1c2.`1, res)]) (cartprod2 allcs).
apply ler_sum. progress.
have : Pr[C2.rest(p, a) @ &m : M p (a.`1, res.`1) /\ M p (a.`2, res.`2)] <=
Pr[C1.main(a.`1,p) @ &m : M p (a.`1, res)].
rewrite H.
have ->: a = (a.`1,a.`1). smt(). simplify.
apply (avr_lemma_7_app &m M p ).
smt().
have f3 : forall (a b c : real), b <= c => a - b >= a - c.
smt().
apply f3.
apply f2.
qed.
local lemma avr_lemma_9_app &m M p :
big (fun r => fst r = snd r) (fun (c1c2 : ct * ct) =>
((mu1 d c1c2.`1) * (mu1 d c1c2.`2)) *
Pr[ C1.main(c1c2.`1,p) @ &m : M p (c1c2.`1, res) ])
(cartprod2 allcs)
= (1%r/(size allcs)%r) * Pr[ X1.run(p) @ &m : M p (res.`1, res.`2) ].
have ->: big (fun r => fst r = snd r) (fun (c1c2 : ct * ct) =>
((mu1 d c1c2.`1) * (mu1 d c1c2.`2)) *
Pr[ C1.main(c1c2.`1,p) @ &m : M p (c1c2.`1, res) ])
(cartprod2 allcs)
= big (fun r => fst r = snd r) (fun (c1c2 : ct * ct) =>
(1%r/(size allcs)%r) * ((mu1 d c1c2.`1) *
Pr[ C1.main(c1c2.`1,p) @ &m : M p (c1c2.`1, res) ]))
(cartprod2 allcs).
apply eq_big. auto.
progress.
case (mu1 d i.`1 = 0%r). progress. rewrite H0. simplify. auto.
progress.
rewrite ss. apply allcs_all. auto.
rewrite ss. rewrite - H. apply allcs_all. auto.
simplify.
auto. simplify.
have ->: big (fun (r : ct * ct) => r.`1 = r.`2)
(fun (c1c2 : ct * ct) =>
(1%r/(size allcs)%r) * (mu1 d c1c2.`1 * Pr[C1.main(c1c2.`1,p) @ &m : M p (c1c2.`1, res)]))
(cartprod2 allcs)
= (1%r/(size allcs)%r) * big (fun (r : ct * ct) => r.`1 = r.`2)
(fun (c1c2 : ct * ct) =>
(mu1 d c1c2.`1 * Pr[C1.main(c1c2.`1,p) @ &m : M p (c1c2.`1, res)]))
(cartprod2 allcs).
rewrite mulr_sumr. auto.
auto.
have ->: big (fun (r : ct * ct) => r.`1 = r.`2)
(fun (c1c2 : ct * ct) =>
mu1 d c1c2.`1 * Pr[C1.main(c1c2.`1,p) @ &m : M p (c1c2.`1, res)])
(cartprod2 allcs)
= big predT
(fun (c : ct) =>
mu1 d c * Pr[C1.main(c,p) @ &m : M p (c, res)])
allcs.
have ->: big predT (fun (c : ct) => mu1 d c * Pr[C1.main(c,p) @ &m : M p (c, res)]) allcs
= big predT (fun (c : ct) => mu1 d c * Pr[C1.main(c,p) @ &m : M p (c, res)])
(map fst (filter (fun x => fst x = snd x) (cartprod2 allcs))). rewrite cart2_diag_unzip1. apply allcs_uniq. auto.
rewrite big_mapT.
rewrite - big_filter. rewrite /(\o). auto.
rewrite x0. auto.
qed.
local lemma avr_lemma_10_app &m M p :
Pr[ Xseq(C2).run(p) @ &m : res.`1.`1 <> res.`1.`2 /\ M p (res.`1.`1, res.`2.`1) /\ M p (res.`1.`2, res.`2.`2) ] >=
Pr[ Xseq(C2).run(p) @ &m : M p (res.`1.`1, res.`2.`1) /\ M p (res.`1.`2, res.`2.`2) ]
- (1%r/(size allcs)%r) * Pr[ X1.run(p) @ &m : M p (res.`1, res.`2) ].
rewrite - avr_lemma_9_app.
apply avr_lemma_8_app.
qed.
local lemma avr_lemma_11_app &m M p :
Pr[ Xseq(C2).run(p) @ &m : res.`1.`1 <> res.`1.`2
/\ M p (res.`1.`1, res.`2.`1) /\ M p (res.`1.`2, res.`2.`2) ]
>= Pr[ X1.run(p) @ &m : M p (res.`1, res.`2) ] ^2
- (1%r/(size allcs)%r) * Pr[ X1.run(p) @ &m : M p (res.`1, res.`2) ].
apply (ler_trans (Pr[ Xseq(C2).run(p) @ &m : M p (res.`1.`1, res.`2.`1)
/\ M p (res.`1.`2, res.`2.`2) ]
- (1%r/(size allcs)%r) * Pr[ X1.run(p) @ &m : M p (res.`1, res.`2) ])).
have ff : Pr[X1.run(p) @ &m : M p (res.`1, res.`2)] ^ 2
<= Pr[Xseq(C2).run(p) @ &m : M p (res.`1.`1, res.`2.`1)
/\ M p (res.`1.`2, res.`2.`2)].
apply x2.
smt().
apply (avr_lemma_10_app &m M p).
qed.
local lemma final_eq &m M p :
Pr[ InitRun2(A).run(p) @ &m
: res.`1.`1 <> res.`2.`1 /\ M p res.`1 /\ M p res.`2 ]
>= Pr[ InitRun1(A).run(p) @ &m : M p res ]^2
- (1%r/(size allcs)%r) * Pr[ InitRun1(A).run(p) @ &m : M p res ].
proof.
have <-: Pr[ Xseq(C2).run(p) @ &m : res.`1.`1 <> res.`1.`2
/\ M p (res.`1.`1, res.`2.`1) /\ M p (res.`1.`2, res.`2.`2) ]
= Pr[ InitRun2(A).run(p) @ &m
: res.`1.`1 <> res.`2.`1 /\ M p res.`1 /\ M p res.`2 ].
byequiv. proc.
simplify.
elim rewindable_A_plus.
move => fA [s1 [s2 [s2h [s2ll [s3 [s3h ]]]] ]] s3ll.
swap {2} 2 -1.
swap {2} 5 -3.
inline*. wp.
call (_:true).
call (_:true).
call (_:true).
call (_:true).
call (_:true).
wp.
simplify.
rnd. rnd.
skip. progress. auto. auto.
have <-: Pr[ X1.run(p) @ &m : M p (res.`1, res.`2) ]
= Pr[ InitRun1(A).run(p) @ &m : M p res ].
byequiv. proc. inline*. swap {2} 2 -1. wp.
simplify. call (_:true). call (_:true). wp. rnd.
skip. progress. auto. auto.
apply avr_lemma_11_app.
qed.
lemma extraction_success_prob &m AccRun SuccExtr p negl :
Pr[ InitRun2(A).run(p) @ &m
: res.`1.`1 <> res.`2.`1 /\ AccRun p res.`1 /\ AccRun p res.`2
/\ !SuccExtr p res.`1 res.`2 ] <= negl
=>
Pr[ InitRun2(A).run(p) @ &m : res.`1.`1 <> res.`2.`1
/\ AccRun p res.`1 /\ AccRun p res.`2 /\ SuccExtr p res.`1 res.`2 ]
>= (Pr[ InitRun1(A).run(p) @ &m : AccRun p res ]^2
- (1%r/(size allcs)%r) * Pr[ InitRun1(A).run(p) @ &m : AccRun p res ])
- negl.
progress.
have : Pr[InitRun1(A).run(p) @ &m : AccRun p res] ^ 2 -
Pr[InitRun1(A).run(p) @ &m : AccRun p res] / (size allcs)%r <=
Pr[InitRun2(A).run(p) @ &m : res.`1.`1 <> res.`2.`1 /\
AccRun p res.`1 /\ AccRun p res.`2 /\ SuccExtr p res.`1 res.`2] + negl.
apply (ler_trans Pr[ InitRun2(A).run(p) @ &m
: res.`1.`1 <> res.`2.`1 /\ AccRun p res.`1 /\ AccRun p res.`2 ] ).
apply final_eq.
rewrite Pr[mu_split SuccExtr p res.`1 res.`2].
have ->: Pr[InitRun2(A).run(p) @ &m :
(res.`1.`1 <> res.`2.`1 /\ AccRun p res.`1 /\ AccRun p res.`2) /\
SuccExtr p res.`1 res.`2] = Pr[InitRun2(A).run(p) @ &m :
res.`1.`1 <> res.`2.`1 /\ AccRun p res.`1 /\ AccRun p res.`2 /\
SuccExtr p res.`1 res.`2].
rewrite Pr[mu_eq]. smt(). auto.
have ->: Pr[InitRun2(A).run(p) @ &m :
(res.`1.`1 <> res.`2.`1 /\ AccRun p res.`1 /\ AccRun p res.`2) /\
!SuccExtr p res.`1 res.`2] = Pr[InitRun2(A).run(p) @ &m :
res.`1.`1 <> res.`2.`1 /\ AccRun p res.`1 /\ AccRun p res.`2 /\
!SuccExtr p res.`1 res.`2].
rewrite Pr[mu_eq]. smt(). auto.
smt().
smt().
qed.
local lemma qqq1 (a b : real) : a <= b => sqrt a <= sqrt b.
smt(@RealExp). qed.
local lemma qqq2 (a b : real) : a ^ 2 <= b => a <= sqrt b.
smt(@RealExp). qed.
lemma extraction_success_prob_coroll &m AccRun SuccExtr p negl :
Pr[ InitRun2(A).run(p) @ &m
: res.`1.`1 <> res.`2.`1 /\ AccRun p res.`1 /\ AccRun p res.`2
/\ !SuccExtr p res.`1 res.`2 ] <= negl
=> Pr[ InitRun2(A).run(p) @ &m
: SuccExtr p res.`1 res.`2 ] = 0%r
=> Pr[ InitRun1(A).run(p) @ &m : AccRun p res ]
<= sqrt (negl + 1%r/(size allcs)%r).
proof. progress.
have f2 : Pr[InitRun2(A).run(p) @ &m :
res.`1.`1 <> res.`2.`1 /\
AccRun p res.`1 /\ AccRun p res.`2 /\ SuccExtr p res.`1 res.`2] = 0%r.
have ff2: Pr[InitRun2(A).run(p) @ &m :
res.`1.`1 <> res.`2.`1 /\
AccRun p res.`1 /\ AccRun p res.`2 /\ SuccExtr p res.`1 res.`2]
<= 0%r. rewrite - H0.
rewrite Pr[mu_sub]. smt(). auto.
smt(@Distr).
have f1 : 0%r
>= (Pr[ InitRun1(A).run(p) @ &m : AccRun p res ]^2
- (1%r/(size allcs)%r) * Pr[ InitRun1(A).run(p) @ &m : AccRun p res ])
- negl.
rewrite - f2.
apply (extraction_success_prob &m). assumption.
clear f2. clear H.
have f3 : Pr[InitRun1(A).run(p) @ &m : AccRun p res] ^ 2
<= 1%r / (size allcs)%r * Pr[InitRun1(A).run(p) @ &m : AccRun p res] + negl.
smt().
clear f1.
clear H0.
have : Pr[InitRun1(A).run(p) @ &m : AccRun p res] <=
sqrt (1%r / (size allcs)%r * Pr[InitRun1(A).run(p) @ &m : AccRun p res] + negl).
apply qqq2. auto.
clear f3. simplify.
move => f4.
apply (ler_trans (sqrt (Pr[InitRun1(A).run(p) @ &m : AccRun p res] / (size allcs)%r + negl))).
auto.
apply qqq1.
have : Pr[InitRun1(A).run(p) @ &m : AccRun p res] <= 1%r. rewrite Pr[mu_le1]. auto.
have : Pr[InitRun1(A).run(p) @ &m : AccRun p res] >= 0%r. rewrite Pr[mu_ge0]. auto.
have : 0 <= size allcs.
elim allcs. auto. progress. smt().
have : forall a b , 0%r <= a <= 1%r => b >= 0%r => a/b <= 1%r/b.
progress.
case (b = 0%r). progress.
move => bpos.
apply (ler_pdivr_mulr).
smt().
smt().
progress.
have : Pr[InitRun1(A).run(p) @ &m : AccRun p res] / (size allcs)%r <= inv (size allcs)%r.
apply H. auto.
smt().
smt().
qed.
end section.
end ExtractabilityEquationsTheory.