-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathapp.py
50 lines (39 loc) · 1.25 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from flask import Flask, render_template,request
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.externals import joblib
app = Flask(__name__)
@app.route('/')
def home():
return render_template('home.html')
@app.route('/predict', methods = ['POST'])
def predict():
df = pd.read_csv("data/Youtube01-Psy.csv")
df_data = df[['CONTENT', 'CLASS']]
# Features and Labels
df_x = df_data['CONTENT']
df_y = df_data.CLASS
#Extract the features with countVectorizer
corpus = df_x
cv = CountVectorizer()
X = cv.fit_transform(corpus)
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, df_y, test_size = 0.33, random_state = 42)
#Navie Bayes
clf = MultinomialNB()
clf.fit(X_train, y_train)
clf.score(X_test, y_test)
#Save Model
joblib.dump(clf, 'model.pkl')
print("Model dumped!")
#ytb_model = open('spam_model.pkl', 'rb')
clf = joblib.load('model.pkl')
if request.method == 'POST':
comment = request.form['comment']
data = [comment]
vect = cv.transform(data).toarray()
my_prediction = clf.predict(vect)
return render_template('result.html', prediction = my_prediction)
if __name__ == '__main__':
app.run()