|
| 1 | +/// The prime factors of 13195 are 5, 7, 13 and 29. |
| 2 | +/// |
| 3 | +/// What is the largest prime factor of the number 600851475143 ? |
| 4 | +/// |
| 5 | +/// ```rust |
| 6 | +/// use self::project_euler::m3::largest_prime_factor_of_the_number_600851475143; |
| 7 | +/// assert_eq!(largest_prime_factor_of_the_number_600851475143(), 6857); |
| 8 | +/// ``` |
| 9 | +pub fn largest_prime_factor_of_the_number_600851475143() -> u64 { |
| 10 | + let mut n = 600851475143u64; |
| 11 | + let mut diviser = 2u64; |
| 12 | + let mut max_factor = 0u64; |
| 13 | + // 16 -> 2 * 8 -> 2 * 4 -> 2 * 2 -> 2 * 1 |
| 14 | + // 21 -> 3 * 7 -> 7 * 1 |
| 15 | + // 28 -> 2 * 14 -> 2 * 7 -> 7 * 1 |
| 16 | + while n != 0 && n != 1 { |
| 17 | + if n % diviser != 0 { |
| 18 | + diviser += 1; |
| 19 | + } else { |
| 20 | + max_factor = n; |
| 21 | + n = n / diviser; |
| 22 | + } |
| 23 | + } |
| 24 | + max_factor |
| 25 | +} |
| 26 | + |
| 27 | +/// The prime factors of 13195 are 5, 7, 13 and 29. |
| 28 | +/// |
| 29 | +/// What is the largest prime factor of the number 600851475143 ? |
| 30 | +/// |
| 31 | +/// ```rust |
| 32 | +/// use self::project_euler::m3::largest_prime_factor_of_the_number_600851475143_skip_4_6_8_10_12; |
| 33 | +/// assert_eq!(largest_prime_factor_of_the_number_600851475143_skip_4_6_8_10_12(), 6857); |
| 34 | +/// ``` |
| 35 | +pub fn largest_prime_factor_of_the_number_600851475143_skip_4_6_8_10_12() -> u64 { |
| 36 | + let mut n = 600851475143u64; |
| 37 | + let mut diviser = 3u64; |
| 38 | + let mut max_factor; |
| 39 | + |
| 40 | + if n % 2 == 0 { |
| 41 | + n /= 2; |
| 42 | + max_factor = 2; |
| 43 | + while n % 2 == 0 { |
| 44 | + n /= 2; |
| 45 | + } |
| 46 | + } else { |
| 47 | + max_factor = 1; |
| 48 | + } |
| 49 | + |
| 50 | + while n > 1 { |
| 51 | + if n % diviser == 0 { |
| 52 | + n /= diviser; |
| 53 | + max_factor = diviser; |
| 54 | + while n % diviser == 0 { |
| 55 | + n /= diviser |
| 56 | + } |
| 57 | + } else { |
| 58 | + diviser += 2 |
| 59 | + } |
| 60 | + } |
| 61 | + max_factor |
| 62 | +} |
| 63 | + |
| 64 | +/// The prime factors of 13195 are 5, 7, 13 and 29. |
| 65 | +/// |
| 66 | +/// What is the largest prime factor of the number 600851475143 ? |
| 67 | +/// |
| 68 | +/// ```rust |
| 69 | +/// use self::project_euler::m3::largest_prime_factor_of_the_number_600851475143_skip_4_6_8_10_12_n_ab; |
| 70 | +/// assert_eq!(largest_prime_factor_of_the_number_600851475143_skip_4_6_8_10_12_n_ab(), 6857); |
| 71 | +/// ``` |
| 72 | +pub fn largest_prime_factor_of_the_number_600851475143_skip_4_6_8_10_12_n_ab() -> u64 { |
| 73 | + let mut n = 600851475143u64; |
| 74 | + let mut diviser = 3u64; |
| 75 | + let mut max_factor; |
| 76 | + |
| 77 | + if n % 2 == 0 { |
| 78 | + n /= 2; |
| 79 | + max_factor = 2; |
| 80 | + while n % 2 == 0 { |
| 81 | + n /= 2; |
| 82 | + } |
| 83 | + } else { |
| 84 | + max_factor = 1; |
| 85 | + } |
| 86 | + |
| 87 | + // n = 1 * n || n = a * b |
| 88 | + // in square, n = sqrt(n) * sqrt(n) |
| 89 | + // pattern 1: a = sqrt(n) && b = sqrt(n) |
| 90 | + // pattern 2: a <= sqrt(n) || b <= sqrt(n) |
| 91 | + // impossible: a > sqrt(n) && b >= sqrt(n) |
| 92 | + let a = (n as f64).sqrt() as u64; |
| 93 | + while n > 1 && diviser <= a { |
| 94 | + if n % diviser == 0 { |
| 95 | + n /= diviser; |
| 96 | + max_factor = diviser; |
| 97 | + while n % diviser == 0 { |
| 98 | + n /= diviser |
| 99 | + } |
| 100 | + } else { |
| 101 | + diviser += 2 |
| 102 | + } |
| 103 | + } |
| 104 | + max_factor |
| 105 | +} |
0 commit comments