Skip to content

Commit 8e6f333

Browse files
Added the Project
1 parent f0094d7 commit 8e6f333

10 files changed

+3581
-0
lines changed

House_Price_Predictor/A icon.png

3.37 KB
Loading

House_Price_Predictor/CWP_ Course_project.ipynb

Lines changed: 2135 additions & 0 deletions
Large diffs are not rendered by default.

House_Price_Predictor/Dragon.joblib

48.3 KB
Binary file not shown.
Lines changed: 69 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,69 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "code",
5+
"execution_count": 1,
6+
"id": "09c4931c",
7+
"metadata": {},
8+
"outputs": [],
9+
"source": [
10+
"from joblib import dump,load\n",
11+
"import numpy as np\n",
12+
"model=load('Dragon.joblib')"
13+
]
14+
},
15+
{
16+
"cell_type": "code",
17+
"execution_count": 2,
18+
"id": "c8fecd9a",
19+
"metadata": {},
20+
"outputs": [
21+
{
22+
"data": {
23+
"text/plain": [
24+
"array([16.7])"
25+
]
26+
},
27+
"execution_count": 2,
28+
"metadata": {},
29+
"output_type": "execute_result"
30+
}
31+
],
32+
"source": [
33+
"input=np.array([[0.15682292, -0.4898311 , 0.98336806, -0.27288841, 0.47919371,\n",
34+
" 0.28423269, 0.87020968, -0.68730678, 1.63579367, 1.50571521,\n",
35+
" 0.81196637, 0.44624347, 0.81480158]])\n",
36+
"model.predict(input)"
37+
]
38+
},
39+
{
40+
"cell_type": "code",
41+
"execution_count": null,
42+
"id": "c198ebcb",
43+
"metadata": {},
44+
"outputs": [],
45+
"source": []
46+
}
47+
],
48+
"metadata": {
49+
"kernelspec": {
50+
"display_name": "Python 3 (ipykernel)",
51+
"language": "python",
52+
"name": "python3"
53+
},
54+
"language_info": {
55+
"codemirror_mode": {
56+
"name": "ipython",
57+
"version": 3
58+
},
59+
"file_extension": ".py",
60+
"mimetype": "text/x-python",
61+
"name": "python",
62+
"nbconvert_exporter": "python",
63+
"pygments_lexer": "ipython3",
64+
"version": "3.10.4"
65+
}
66+
},
67+
"nbformat": 4,
68+
"nbformat_minor": 5
69+
}
Lines changed: 33 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,33 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "code",
5+
"execution_count": null,
6+
"id": "871abc57",
7+
"metadata": {},
8+
"outputs": [],
9+
"source": []
10+
}
11+
],
12+
"metadata": {
13+
"kernelspec": {
14+
"display_name": "Python 3 (ipykernel)",
15+
"language": "python",
16+
"name": "python3"
17+
},
18+
"language_info": {
19+
"codemirror_mode": {
20+
"name": "ipython",
21+
"version": 3
22+
},
23+
"file_extension": ".py",
24+
"mimetype": "text/x-python",
25+
"name": "python",
26+
"nbconvert_exporter": "python",
27+
"pygments_lexer": "ipython3",
28+
"version": "3.10.4"
29+
}
30+
},
31+
"nbformat": 4,
32+
"nbformat_minor": 5
33+
}
Lines changed: 14 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,14 @@
1+
2+
Random Forest Model:
3+
Mean 3.279369016724228
4+
Standred deviation 0.6338795388968552
5+
6+
Linear Regression Model:
7+
Mean 5.032945871663797
8+
Standred deviation 1.0593782704523724
9+
10+
Decesion Tree Model:
11+
Mean 4.266164261693081
12+
Standred deviation 0.7868095840297176
13+
14+
From We can see the Random Forest Model is performing good.

House_Price_Predictor/Model_outputs.txt - Jupyter Text Editor.html

Lines changed: 265 additions & 0 deletions
Large diffs are not rendered by default.

House_Price_Predictor/data.csv

Lines changed: 507 additions & 0 deletions
Large diffs are not rendered by default.

House_Price_Predictor/housing.data

Lines changed: 506 additions & 0 deletions
Large diffs are not rendered by default.

House_Price_Predictor/housing.names

Lines changed: 52 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,52 @@
1+
1. Title: Boston Housing Data
2+
3+
2. Sources:
4+
(a) Origin: This dataset was taken from the StatLib library which is
5+
maintained at Carnegie Mellon University.
6+
(b) Creator: Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the
7+
demand for clean air', J. Environ. Economics & Management,
8+
vol.5, 81-102, 1978.
9+
(c) Date: July 7, 1993
10+
11+
3. Past Usage:
12+
- Used in Belsley, Kuh & Welsch, 'Regression diagnostics ...', Wiley,
13+
1980. N.B. Various transformations are used in the table on
14+
pages 244-261.
15+
- Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning.
16+
In Proceedings on the Tenth International Conference of Machine
17+
Learning, 236-243, University of Massachusetts, Amherst. Morgan
18+
Kaufmann.
19+
20+
4. Relevant Information:
21+
22+
Concerns housing values in suburbs of Boston.
23+
24+
5. Number of Instances: 506
25+
26+
6. Number of Attributes: 13 continuous attributes (including "class"
27+
attribute "MEDV"), 1 binary-valued attribute.
28+
29+
7. Attribute Information:
30+
31+
1. CRIM per capita crime rate by town
32+
2. ZN proportion of residential land zoned for lots over
33+
25,000 sq.ft.
34+
3. INDUS proportion of non-retail business acres per town
35+
4. CHAS Charles River dummy variable (= 1 if tract bounds
36+
river; 0 otherwise)
37+
5. NOX nitric oxides concentration (parts per 10 million)
38+
6. RM average number of rooms per dwelling
39+
7. AGE proportion of owner-occupied units built prior to 1940
40+
8. DIS weighted distances to five Boston employment centres
41+
9. RAD index of accessibility to radial highways
42+
10. TAX full-value property-tax rate per $10,000
43+
11. PTRATIO pupil-teacher ratio by town
44+
12. B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks
45+
by town
46+
13. LSTAT % lower status of the population
47+
14. MEDV Median value of owner-occupied homes in $1000's
48+
49+
8. Missing Attribute Values: None.
50+
51+
52+

0 commit comments

Comments
 (0)