|
| 1 | +# Python3 program to perform basic timSort |
| 2 | +MIN_MERGE = 32 |
| 3 | + |
| 4 | + |
| 5 | +def calcMinRun(n): |
| 6 | + """Returns the minimum length of a |
| 7 | + run from 23 - 64 so that |
| 8 | + the len(array)/minrun is less than or |
| 9 | + equal to a power of 2. |
| 10 | +
|
| 11 | + e.g. 1=>1, ..., 63=>63, 64=>32, 65=>33, |
| 12 | + ..., 127=>64, 128=>32, ... |
| 13 | + """ |
| 14 | + r = 0 |
| 15 | + while n >= MIN_MERGE: |
| 16 | + r |= n & 1 |
| 17 | + n >>= 1 |
| 18 | + return n + r |
| 19 | + |
| 20 | + |
| 21 | +# This function sorts array from left index to |
| 22 | +# to right index which is of size atmost RUN |
| 23 | +def insertionSort(arr, left, right): |
| 24 | + for i in range(left + 1, right + 1): |
| 25 | + j = i |
| 26 | + while j > left and arr[j] < arr[j - 1]: |
| 27 | + arr[j], arr[j - 1] = arr[j - 1], arr[j] |
| 28 | + j -= 1 |
| 29 | + |
| 30 | + |
| 31 | +# Merge function merges the sorted runs |
| 32 | +def merge(arr, l, m, r): |
| 33 | + |
| 34 | + # original array is broken in two parts |
| 35 | + # left and right array |
| 36 | + len1, len2 = m - l + 1, r - m |
| 37 | + left, right = [], [] |
| 38 | + for i in range(0, len1): |
| 39 | + left.append(arr[l + i]) |
| 40 | + for i in range(0, len2): |
| 41 | + right.append(arr[m + 1 + i]) |
| 42 | + |
| 43 | + i, j, k = 0, 0, l |
| 44 | + |
| 45 | + # after comparing, we merge those two array |
| 46 | + # in larger sub array |
| 47 | + while i < len1 and j < len2: |
| 48 | + if left[i] <= right[j]: |
| 49 | + arr[k] = left[i] |
| 50 | + i += 1 |
| 51 | + |
| 52 | + else: |
| 53 | + arr[k] = right[j] |
| 54 | + j += 1 |
| 55 | + |
| 56 | + k += 1 |
| 57 | + |
| 58 | + # Copy remaining elements of left, if any |
| 59 | + while i < len1: |
| 60 | + arr[k] = left[i] |
| 61 | + k += 1 |
| 62 | + i += 1 |
| 63 | + |
| 64 | + # Copy remaining element of right, if any |
| 65 | + while j < len2: |
| 66 | + arr[k] = right[j] |
| 67 | + k += 1 |
| 68 | + j += 1 |
| 69 | + |
| 70 | + |
| 71 | +# Iterative Timsort function to sort the |
| 72 | +# array[0...n-1] (similar to merge sort) |
| 73 | +def timSort(arr): |
| 74 | + n = len(arr) |
| 75 | + minRun = calcMinRun(n) |
| 76 | + |
| 77 | + # Sort individual subarrays of size RUN |
| 78 | + for start in range(0, n, minRun): |
| 79 | + end = min(start + minRun - 1, n - 1) |
| 80 | + insertionSort(arr, start, end) |
| 81 | + |
| 82 | + # Start merging from size RUN (or 32). It will merge |
| 83 | + # to form size 64, then 128, 256 and so on .... |
| 84 | + size = minRun |
| 85 | + while size < n: |
| 86 | + |
| 87 | + # Pick starting point of left sub array. We |
| 88 | + # are going to merge arr[left..left+size-1] |
| 89 | + # and arr[left+size, left+2*size-1] |
| 90 | + # After every merge, we increase left by 2*size |
| 91 | + for left in range(0, n, 2 * size): |
| 92 | + |
| 93 | + # Find ending point of left sub array |
| 94 | + # mid+1 is starting point of right sub array |
| 95 | + mid = min(n - 1, left + size - 1) |
| 96 | + right = min((left + 2 * size - 1), (n - 1)) |
| 97 | + |
| 98 | + # Merge sub array arr[left.....mid] & |
| 99 | + # arr[mid+1....right] |
| 100 | + if mid < right: |
| 101 | + merge(arr, left, mid, right) |
| 102 | + |
| 103 | + size = 2 * size |
| 104 | + |
| 105 | + |
| 106 | +# Driver program to test above function |
| 107 | +if __name__ == "__main__": |
| 108 | + |
| 109 | + arr = [-2, 7, 15, -14, 0, 15, 0, |
| 110 | + 7, -7, -4, -13, 5, 8, -14, 12] |
| 111 | + |
| 112 | + print("Given Array is") |
| 113 | + print(arr) |
| 114 | + |
| 115 | + # Function Call |
| 116 | + timSort(arr) |
| 117 | + |
| 118 | + print("After Sorting Array is") |
| 119 | + print(arr) |
| 120 | + |
0 commit comments