-
Notifications
You must be signed in to change notification settings - Fork 355
/
Copy pathmodel-libraries-snippets.ts
1402 lines (1105 loc) · 40.7 KB
/
model-libraries-snippets.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import type { ModelData } from "./model-data.js";
import type { WidgetExampleTextInput, WidgetExampleSentenceSimilarityInput } from "./widget-example.js";
import { LIBRARY_TASK_MAPPING } from "./library-to-tasks.js";
import { getModelInputSnippet } from "./snippets/inputs.js";
import type { ChatCompletionInputMessage } from "./tasks/index.js";
import { stringifyMessages } from "./snippets/common.js";
const TAG_CUSTOM_CODE = "custom_code";
function nameWithoutNamespace(modelId: string): string {
const splitted = modelId.split("/");
return splitted.length === 1 ? splitted[0] : splitted[1];
}
const escapeStringForJson = (str: string): string => JSON.stringify(str).slice(1, -1); // slice is needed to remove surrounding quotes added by JSON.stringify
//#region snippets
export const adapters = (model: ModelData): string[] => [
`from adapters import AutoAdapterModel
model = AutoAdapterModel.from_pretrained("${model.config?.adapter_transformers?.model_name}")
model.load_adapter("${model.id}", set_active=True)`,
];
const allennlpUnknown = (model: ModelData) => [
`import allennlp_models
from allennlp.predictors.predictor import Predictor
predictor = Predictor.from_path("hf://${model.id}")`,
];
const allennlpQuestionAnswering = (model: ModelData) => [
`import allennlp_models
from allennlp.predictors.predictor import Predictor
predictor = Predictor.from_path("hf://${model.id}")
predictor_input = {"passage": "My name is Wolfgang and I live in Berlin", "question": "Where do I live?"}
predictions = predictor.predict_json(predictor_input)`,
];
export const allennlp = (model: ModelData): string[] => {
if (model.tags.includes("question-answering")) {
return allennlpQuestionAnswering(model);
}
return allennlpUnknown(model);
};
export const araclip = (model: ModelData): string[] => [
`from araclip import AraClip
model = AraClip.from_pretrained("${model.id}")`,
];
export const asteroid = (model: ModelData): string[] => [
`from asteroid.models import BaseModel
model = BaseModel.from_pretrained("${model.id}")`,
];
export const audioseal = (model: ModelData): string[] => {
const watermarkSnippet = `# Watermark Generator
from audioseal import AudioSeal
model = AudioSeal.load_generator("${model.id}")
# pass a tensor (tensor_wav) of shape (batch, channels, samples) and a sample rate
wav, sr = tensor_wav, 16000
watermark = model.get_watermark(wav, sr)
watermarked_audio = wav + watermark`;
const detectorSnippet = `# Watermark Detector
from audioseal import AudioSeal
detector = AudioSeal.load_detector("${model.id}")
result, message = detector.detect_watermark(watermarked_audio, sr)`;
return [watermarkSnippet, detectorSnippet];
};
function get_base_diffusers_model(model: ModelData): string {
return model.cardData?.base_model?.toString() ?? "fill-in-base-model";
}
function get_prompt_from_diffusers_model(model: ModelData): string | undefined {
const prompt = (model.widgetData?.[0] as WidgetExampleTextInput | undefined)?.text ?? model.cardData?.instance_prompt;
if (prompt) {
return escapeStringForJson(prompt);
}
}
export const ben2 = (model: ModelData): string[] => [
`import requests
from PIL import Image
from ben2 import AutoModel
url = "https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg"
image = Image.open(requests.get(url, stream=True).raw)
model = AutoModel.from_pretrained("${model.id}")
model.to("cuda").eval()
foreground = model.inference(image)
`,
];
export const bertopic = (model: ModelData): string[] => [
`from bertopic import BERTopic
model = BERTopic.load("${model.id}")`,
];
export const bm25s = (model: ModelData): string[] => [
`from bm25s.hf import BM25HF
retriever = BM25HF.load_from_hub("${model.id}")`,
];
export const cxr_foundation = (): string[] => [
`# pip install git+https://github.com/Google-Health/cxr-foundation.git#subdirectory=python
# Load image as grayscale (Stillwaterising, CC0, via Wikimedia Commons)
import requests
from PIL import Image
from io import BytesIO
image_url = "https://upload.wikimedia.org/wikipedia/commons/c/c8/Chest_Xray_PA_3-8-2010.png"
img = Image.open(requests.get(image_url, headers={'User-Agent': 'Demo'}, stream=True).raw).convert('L')
# Run inference
from clientside.clients import make_hugging_face_client
cxr_client = make_hugging_face_client('cxr_model')
print(cxr_client.get_image_embeddings_from_images([img]))`,
];
export const depth_anything_v2 = (model: ModelData): string[] => {
let encoder: string;
let features: string;
let out_channels: string;
encoder = "<ENCODER>";
features = "<NUMBER_OF_FEATURES>";
out_channels = "<OUT_CHANNELS>";
if (model.id === "depth-anything/Depth-Anything-V2-Small") {
encoder = "vits";
features = "64";
out_channels = "[48, 96, 192, 384]";
} else if (model.id === "depth-anything/Depth-Anything-V2-Base") {
encoder = "vitb";
features = "128";
out_channels = "[96, 192, 384, 768]";
} else if (model.id === "depth-anything/Depth-Anything-V2-Large") {
encoder = "vitl";
features = "256";
out_channels = "[256, 512, 1024, 1024";
}
return [
`
# Install from https://github.com/DepthAnything/Depth-Anything-V2
# Load the model and infer depth from an image
import cv2
import torch
from depth_anything_v2.dpt import DepthAnythingV2
# instantiate the model
model = DepthAnythingV2(encoder="${encoder}", features=${features}, out_channels=${out_channels})
# load the weights
filepath = hf_hub_download(repo_id="${model.id}", filename="depth_anything_v2_${encoder}.pth", repo_type="model")
state_dict = torch.load(filepath, map_location="cpu")
model.load_state_dict(state_dict).eval()
raw_img = cv2.imread("your/image/path")
depth = model.infer_image(raw_img) # HxW raw depth map in numpy
`,
];
};
export const depth_pro = (model: ModelData): string[] => {
const installSnippet = `# Download checkpoint
pip install huggingface-hub
huggingface-cli download --local-dir checkpoints ${model.id}`;
const inferenceSnippet = `import depth_pro
# Load model and preprocessing transform
model, transform = depth_pro.create_model_and_transforms()
model.eval()
# Load and preprocess an image.
image, _, f_px = depth_pro.load_rgb("example.png")
image = transform(image)
# Run inference.
prediction = model.infer(image, f_px=f_px)
# Results: 1. Depth in meters
depth = prediction["depth"]
# Results: 2. Focal length in pixels
focallength_px = prediction["focallength_px"]`;
return [installSnippet, inferenceSnippet];
};
export const derm_foundation = (): string[] => [
`from huggingface_hub import from_pretrained_keras
import tensorflow as tf, requests
# Load and format input
IMAGE_URL = "https://storage.googleapis.com/dx-scin-public-data/dataset/images/3445096909671059178.png"
input_tensor = tf.train.Example(
features=tf.train.Features(
feature={
"image/encoded": tf.train.Feature(
bytes_list=tf.train.BytesList(value=[requests.get(IMAGE_URL, stream=True).content])
)
}
)
).SerializeToString()
# Load model and run inference
loaded_model = from_pretrained_keras("google/derm-foundation")
infer = loaded_model.signatures["serving_default"]
print(infer(inputs=tf.constant([input_tensor])))`,
];
const diffusersDefaultPrompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k";
const diffusers_default = (model: ModelData) => [
`from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("${model.id}")
prompt = "${get_prompt_from_diffusers_model(model) ?? diffusersDefaultPrompt}"
image = pipe(prompt).images[0]`,
];
const diffusers_controlnet = (model: ModelData) => [
`from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
controlnet = ControlNetModel.from_pretrained("${model.id}")
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"${get_base_diffusers_model(model)}", controlnet=controlnet
)`,
];
const diffusers_lora = (model: ModelData) => [
`from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}")
pipe.load_lora_weights("${model.id}")
prompt = "${get_prompt_from_diffusers_model(model) ?? diffusersDefaultPrompt}"
image = pipe(prompt).images[0]`,
];
const diffusers_textual_inversion = (model: ModelData) => [
`from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}")
pipe.load_textual_inversion("${model.id}")`,
];
export const diffusers = (model: ModelData): string[] => {
if (model.tags.includes("controlnet")) {
return diffusers_controlnet(model);
} else if (model.tags.includes("lora")) {
return diffusers_lora(model);
} else if (model.tags.includes("textual_inversion")) {
return diffusers_textual_inversion(model);
} else {
return diffusers_default(model);
}
};
export const diffusionkit = (model: ModelData): string[] => {
const sd3Snippet = `# Pipeline for Stable Diffusion 3
from diffusionkit.mlx import DiffusionPipeline
pipeline = DiffusionPipeline(
shift=3.0,
use_t5=False,
model_version=${model.id},
low_memory_mode=True,
a16=True,
w16=True,
)`;
const fluxSnippet = `# Pipeline for Flux
from diffusionkit.mlx import FluxPipeline
pipeline = FluxPipeline(
shift=1.0,
model_version=${model.id},
low_memory_mode=True,
a16=True,
w16=True,
)`;
const generateSnippet = `# Image Generation
HEIGHT = 512
WIDTH = 512
NUM_STEPS = ${model.tags.includes("flux") ? 4 : 50}
CFG_WEIGHT = ${model.tags.includes("flux") ? 0 : 5}
image, _ = pipeline.generate_image(
"a photo of a cat",
cfg_weight=CFG_WEIGHT,
num_steps=NUM_STEPS,
latent_size=(HEIGHT // 8, WIDTH // 8),
)`;
const pipelineSnippet = model.tags.includes("flux") ? fluxSnippet : sd3Snippet;
return [pipelineSnippet, generateSnippet];
};
export const cartesia_pytorch = (model: ModelData): string[] => [
`# pip install --no-binary :all: cartesia-pytorch
from cartesia_pytorch import ReneLMHeadModel
from transformers import AutoTokenizer
model = ReneLMHeadModel.from_pretrained("${model.id}")
tokenizer = AutoTokenizer.from_pretrained("allenai/OLMo-1B-hf")
in_message = ["Rene Descartes was"]
inputs = tokenizer(in_message, return_tensors="pt")
outputs = model.generate(inputs.input_ids, max_length=50, top_k=100, top_p=0.99)
out_message = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
print(out_message)
)`,
];
export const cartesia_mlx = (model: ModelData): string[] => [
`import mlx.core as mx
import cartesia_mlx as cmx
model = cmx.from_pretrained("${model.id}")
model.set_dtype(mx.float32)
prompt = "Rene Descartes was"
for text in model.generate(
prompt,
max_tokens=500,
eval_every_n=5,
verbose=True,
top_p=0.99,
temperature=0.85,
):
print(text, end="", flush=True)
`,
];
export const edsnlp = (model: ModelData): string[] => {
const packageName = nameWithoutNamespace(model.id).replaceAll("-", "_");
return [
`# Load it from the Hub directly
import edsnlp
nlp = edsnlp.load("${model.id}")
`,
`# Or install it as a package
!pip install git+https://huggingface.co/${model.id}
# and import it as a module
import ${packageName}
nlp = ${packageName}.load() # or edsnlp.load("${packageName}")
`,
];
};
export const espnetTTS = (model: ModelData): string[] => [
`from espnet2.bin.tts_inference import Text2Speech
model = Text2Speech.from_pretrained("${model.id}")
speech, *_ = model("text to generate speech from")`,
];
export const espnetASR = (model: ModelData): string[] => [
`from espnet2.bin.asr_inference import Speech2Text
model = Speech2Text.from_pretrained(
"${model.id}"
)
speech, rate = soundfile.read("speech.wav")
text, *_ = model(speech)[0]`,
];
const espnetUnknown = () => [`unknown model type (must be text-to-speech or automatic-speech-recognition)`];
export const espnet = (model: ModelData): string[] => {
if (model.tags.includes("text-to-speech")) {
return espnetTTS(model);
} else if (model.tags.includes("automatic-speech-recognition")) {
return espnetASR(model);
}
return espnetUnknown();
};
export const fairseq = (model: ModelData): string[] => [
`from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
"${model.id}"
)`,
];
export const flair = (model: ModelData): string[] => [
`from flair.models import SequenceTagger
tagger = SequenceTagger.load("${model.id}")`,
];
export const gliner = (model: ModelData): string[] => [
`from gliner import GLiNER
model = GLiNER.from_pretrained("${model.id}")`,
];
export const htrflow = (model: ModelData): string[] => [
`# CLI usage
# see docs: https://ai-riksarkivet.github.io/htrflow/latest/getting_started/quick_start.html
htrflow pipeline <path/to/pipeline.yaml> <path/to/image>`,
`# Python usage
from htrflow.pipeline.pipeline import Pipeline
from htrflow.pipeline.steps import Task
from htrflow.models.framework.model import ModelClass
pipeline = Pipeline(
[
Task(
ModelClass, {"model": "${model.id}"}, {}
),
])`,
];
export const keras = (model: ModelData): string[] => [
`# Available backend options are: "jax", "torch", "tensorflow".
import os
os.environ["KERAS_BACKEND"] = "jax"
import keras
model = keras.saving.load_model("hf://${model.id}")
`,
];
const _keras_hub_causal_lm = (modelId: string): string => `
import keras_hub
# Load CausalLM model (optional: use half precision for inference)
causal_lm = keras_hub.models.CausalLM.from_preset("hf://${modelId}", dtype="bfloat16")
causal_lm.compile(sampler="greedy") # (optional) specify a sampler
# Generate text
causal_lm.generate("Keras: deep learning for", max_length=64)
`;
const _keras_hub_text_to_image = (modelId: string): string => `
import keras_hub
# Load TextToImage model (optional: use half precision for inference)
text_to_image = keras_hub.models.TextToImage.from_preset("hf://${modelId}", dtype="bfloat16")
# Generate images with a TextToImage model.
text_to_image.generate("Astronaut in a jungle")
`;
const _keras_hub_text_classifier = (modelId: string): string => `
import keras_hub
# Load TextClassifier model
text_classifier = keras_hub.models.TextClassifier.from_preset(
"hf://${modelId}",
num_classes=2,
)
# Fine-tune
text_classifier.fit(x=["Thilling adventure!", "Total snoozefest."], y=[1, 0])
# Classify text
text_classifier.predict(["Not my cup of tea."])
`;
const _keras_hub_image_classifier = (modelId: string): string => `
import keras_hub
import keras
# Load ImageClassifier model
image_classifier = keras_hub.models.ImageClassifier.from_preset(
"hf://${modelId}",
num_classes=2,
)
# Fine-tune
image_classifier.fit(
x=keras.random.randint((32, 64, 64, 3), 0, 256),
y=keras.random.randint((32, 1), 0, 2),
)
# Classify image
image_classifier.predict(keras.random.randint((1, 64, 64, 3), 0, 256))
`;
const _keras_hub_tasks_with_example = {
CausalLM: _keras_hub_causal_lm,
TextToImage: _keras_hub_text_to_image,
TextClassifier: _keras_hub_text_classifier,
ImageClassifier: _keras_hub_image_classifier,
};
const _keras_hub_task_without_example = (task: string, modelId: string): string => `
import keras_hub
# Create a ${task} model
task = keras_hub.models.${task}.from_preset("hf://${modelId}")
`;
const _keras_hub_generic_backbone = (modelId: string): string => `
import keras_hub
# Create a Backbone model unspecialized for any task
backbone = keras_hub.models.Backbone.from_preset("hf://${modelId}")
`;
export const keras_hub = (model: ModelData): string[] => {
const modelId = model.id;
const tasks = model.config?.keras_hub?.tasks ?? [];
const snippets: string[] = [];
// First, generate tasks with examples
for (const [task, snippet] of Object.entries(_keras_hub_tasks_with_example)) {
if (tasks.includes(task)) {
snippets.push(snippet(modelId));
}
}
// Then, add remaining tasks
for (const task of tasks) {
if (!Object.keys(_keras_hub_tasks_with_example).includes(task)) {
snippets.push(_keras_hub_task_without_example(task, modelId));
}
}
// Finally, add generic backbone snippet
snippets.push(_keras_hub_generic_backbone(modelId));
return snippets;
};
export const lightning_ir = (model: ModelData): string[] => {
if (model.tags.includes("bi-encoder")) {
return [
`#install from https://github.com/webis-de/lightning-ir
from lightning_ir import BiEncoderModule
model = BiEncoderModule("${model.id}")
model.score("query", ["doc1", "doc2", "doc3"])`,
];
} else if (model.tags.includes("cross-encoder")) {
return [
`#install from https://github.com/webis-de/lightning-ir
from lightning_ir import CrossEncoderModule
model = CrossEncoderModule("${model.id}")
model.score("query", ["doc1", "doc2", "doc3"])`,
];
}
return [
`#install from https://github.com/webis-de/lightning-ir
from lightning_ir import BiEncoderModule, CrossEncoderModule
# depending on the model type, use either BiEncoderModule or CrossEncoderModule
model = BiEncoderModule("${model.id}")
# model = CrossEncoderModule("${model.id}")
model.score("query", ["doc1", "doc2", "doc3"])`,
];
};
export const llama_cpp_python = (model: ModelData): string[] => {
const snippets = [
`from llama_cpp import Llama
llm = Llama.from_pretrained(
repo_id="${model.id}",
filename="{{GGUF_FILE}}",
)
`,
];
if (model.tags.includes("conversational")) {
const messages = getModelInputSnippet(model) as ChatCompletionInputMessage[];
snippets.push(`llm.create_chat_completion(
messages = ${stringifyMessages(messages, { attributeKeyQuotes: true, indent: "\t" })}
)`);
} else {
snippets.push(`output = llm(
"Once upon a time,",
max_tokens=512,
echo=True
)
print(output)`);
}
return snippets;
};
export const tf_keras = (model: ModelData): string[] => [
`# Note: 'keras<3.x' or 'tf_keras' must be installed (legacy)
# See https://github.com/keras-team/tf-keras for more details.
from huggingface_hub import from_pretrained_keras
model = from_pretrained_keras("${model.id}")
`,
];
export const mamba_ssm = (model: ModelData): string[] => [
`from mamba_ssm import MambaLMHeadModel
model = MambaLMHeadModel.from_pretrained("${model.id}")`,
];
export const mars5_tts = (model: ModelData): string[] => [
`# Install from https://github.com/Camb-ai/MARS5-TTS
from inference import Mars5TTS
mars5 = Mars5TTS.from_pretrained("${model.id}")`,
];
export const matanyone = (model: ModelData): string[] => [
`# Install from https://github.com/pq-yang/MatAnyone.git
from matanyone.model.matanyone import MatAnyone
model = MatAnyone.from_pretrained("${model.id}")`,
];
export const mesh_anything = (): string[] => [
`# Install from https://github.com/buaacyw/MeshAnything.git
from MeshAnything.models.meshanything import MeshAnything
# refer to https://github.com/buaacyw/MeshAnything/blob/main/main.py#L91 on how to define args
# and https://github.com/buaacyw/MeshAnything/blob/main/app.py regarding usage
model = MeshAnything(args)`,
];
export const open_clip = (model: ModelData): string[] => [
`import open_clip
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:${model.id}')
tokenizer = open_clip.get_tokenizer('hf-hub:${model.id}')`,
];
export const paddlenlp = (model: ModelData): string[] => {
if (model.config?.architectures?.[0]) {
const architecture = model.config.architectures[0];
return [
[
`from paddlenlp.transformers import AutoTokenizer, ${architecture}`,
"",
`tokenizer = AutoTokenizer.from_pretrained("${model.id}", from_hf_hub=True)`,
`model = ${architecture}.from_pretrained("${model.id}", from_hf_hub=True)`,
].join("\n"),
];
} else {
return [
[
`# ⚠️ Type of model unknown`,
`from paddlenlp.transformers import AutoTokenizer, AutoModel`,
"",
`tokenizer = AutoTokenizer.from_pretrained("${model.id}", from_hf_hub=True)`,
`model = AutoModel.from_pretrained("${model.id}", from_hf_hub=True)`,
].join("\n"),
];
}
};
export const pyannote_audio_pipeline = (model: ModelData): string[] => [
`from pyannote.audio import Pipeline
pipeline = Pipeline.from_pretrained("${model.id}")
# inference on the whole file
pipeline("file.wav")
# inference on an excerpt
from pyannote.core import Segment
excerpt = Segment(start=2.0, end=5.0)
from pyannote.audio import Audio
waveform, sample_rate = Audio().crop("file.wav", excerpt)
pipeline({"waveform": waveform, "sample_rate": sample_rate})`,
];
const pyannote_audio_model = (model: ModelData): string[] => [
`from pyannote.audio import Model, Inference
model = Model.from_pretrained("${model.id}")
inference = Inference(model)
# inference on the whole file
inference("file.wav")
# inference on an excerpt
from pyannote.core import Segment
excerpt = Segment(start=2.0, end=5.0)
inference.crop("file.wav", excerpt)`,
];
export const pyannote_audio = (model: ModelData): string[] => {
if (model.tags.includes("pyannote-audio-pipeline")) {
return pyannote_audio_pipeline(model);
}
return pyannote_audio_model(model);
};
export const relik = (model: ModelData): string[] => [
`from relik import Relik
relik = Relik.from_pretrained("${model.id}")`,
];
const tensorflowttsTextToMel = (model: ModelData): string[] => [
`from tensorflow_tts.inference import AutoProcessor, TFAutoModel
processor = AutoProcessor.from_pretrained("${model.id}")
model = TFAutoModel.from_pretrained("${model.id}")
`,
];
const tensorflowttsMelToWav = (model: ModelData): string[] => [
`from tensorflow_tts.inference import TFAutoModel
model = TFAutoModel.from_pretrained("${model.id}")
audios = model.inference(mels)
`,
];
const tensorflowttsUnknown = (model: ModelData): string[] => [
`from tensorflow_tts.inference import TFAutoModel
model = TFAutoModel.from_pretrained("${model.id}")
`,
];
export const tensorflowtts = (model: ModelData): string[] => {
if (model.tags.includes("text-to-mel")) {
return tensorflowttsTextToMel(model);
} else if (model.tags.includes("mel-to-wav")) {
return tensorflowttsMelToWav(model);
}
return tensorflowttsUnknown(model);
};
export const timm = (model: ModelData): string[] => [
`import timm
model = timm.create_model("hf_hub:${model.id}", pretrained=True)`,
];
export const saelens = (/* model: ModelData */): string[] => [
`# pip install sae-lens
from sae_lens import SAE
sae, cfg_dict, sparsity = SAE.from_pretrained(
release = "RELEASE_ID", # e.g., "gpt2-small-res-jb". See other options in https://github.com/jbloomAus/SAELens/blob/main/sae_lens/pretrained_saes.yaml
sae_id = "SAE_ID", # e.g., "blocks.8.hook_resid_pre". Won't always be a hook point
)`,
];
export const seed_story = (): string[] => [
`# seed_story_cfg_path refers to 'https://github.com/TencentARC/SEED-Story/blob/master/configs/clm_models/agent_7b_sft.yaml'
# llm_cfg_path refers to 'https://github.com/TencentARC/SEED-Story/blob/master/configs/clm_models/llama2chat7b_lora.yaml'
from omegaconf import OmegaConf
import hydra
# load Llama2
llm_cfg = OmegaConf.load(llm_cfg_path)
llm = hydra.utils.instantiate(llm_cfg, torch_dtype="fp16")
# initialize seed_story
seed_story_cfg = OmegaConf.load(seed_story_cfg_path)
seed_story = hydra.utils.instantiate(seed_story_cfg, llm=llm) `,
];
const skopsPickle = (model: ModelData, modelFile: string) => {
return [
`import joblib
from skops.hub_utils import download
download("${model.id}", "path_to_folder")
model = joblib.load(
"${modelFile}"
)
# only load pickle files from sources you trust
# read more about it here https://skops.readthedocs.io/en/stable/persistence.html`,
];
};
const skopsFormat = (model: ModelData, modelFile: string) => {
return [
`from skops.hub_utils import download
from skops.io import load
download("${model.id}", "path_to_folder")
# make sure model file is in skops format
# if model is a pickle file, make sure it's from a source you trust
model = load("path_to_folder/${modelFile}")`,
];
};
const skopsJobLib = (model: ModelData) => {
return [
`from huggingface_hub import hf_hub_download
import joblib
model = joblib.load(
hf_hub_download("${model.id}", "sklearn_model.joblib")
)
# only load pickle files from sources you trust
# read more about it here https://skops.readthedocs.io/en/stable/persistence.html`,
];
};
export const sklearn = (model: ModelData): string[] => {
if (model.tags.includes("skops")) {
const skopsmodelFile = model.config?.sklearn?.model?.file;
const skopssaveFormat = model.config?.sklearn?.model_format;
if (!skopsmodelFile) {
return [`# ⚠️ Model filename not specified in config.json`];
}
if (skopssaveFormat === "pickle") {
return skopsPickle(model, skopsmodelFile);
} else {
return skopsFormat(model, skopsmodelFile);
}
} else {
return skopsJobLib(model);
}
};
export const stable_audio_tools = (model: ModelData): string[] => [
`import torch
import torchaudio
from einops import rearrange
from stable_audio_tools import get_pretrained_model
from stable_audio_tools.inference.generation import generate_diffusion_cond
device = "cuda" if torch.cuda.is_available() else "cpu"
# Download model
model, model_config = get_pretrained_model("${model.id}")
sample_rate = model_config["sample_rate"]
sample_size = model_config["sample_size"]
model = model.to(device)
# Set up text and timing conditioning
conditioning = [{
"prompt": "128 BPM tech house drum loop",
}]
# Generate stereo audio
output = generate_diffusion_cond(
model,
conditioning=conditioning,
sample_size=sample_size,
device=device
)
# Rearrange audio batch to a single sequence
output = rearrange(output, "b d n -> d (b n)")
# Peak normalize, clip, convert to int16, and save to file
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
torchaudio.save("output.wav", output, sample_rate)`,
];
export const fastai = (model: ModelData): string[] => [
`from huggingface_hub import from_pretrained_fastai
learn = from_pretrained_fastai("${model.id}")`,
];
export const sam2 = (model: ModelData): string[] => {
const image_predictor = `# Use SAM2 with images
import torch
from sam2.sam2_image_predictor import SAM2ImagePredictor
predictor = SAM2ImagePredictor.from_pretrained(${model.id})
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
predictor.set_image(<your_image>)
masks, _, _ = predictor.predict(<input_prompts>)`;
const video_predictor = `# Use SAM2 with videos
import torch
from sam2.sam2_video_predictor import SAM2VideoPredictor
predictor = SAM2VideoPredictor.from_pretrained(${model.id})
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
state = predictor.init_state(<your_video>)
# add new prompts and instantly get the output on the same frame
frame_idx, object_ids, masks = predictor.add_new_points(state, <your_prompts>):
# propagate the prompts to get masklets throughout the video
for frame_idx, object_ids, masks in predictor.propagate_in_video(state):
...`;
return [image_predictor, video_predictor];
};
export const sampleFactory = (model: ModelData): string[] => [
`python -m sample_factory.huggingface.load_from_hub -r ${model.id} -d ./train_dir`,
];
function get_widget_examples_from_st_model(model: ModelData): string[] | undefined {
const widgetExample = model.widgetData?.[0] as WidgetExampleSentenceSimilarityInput | undefined;
if (widgetExample?.source_sentence && widgetExample?.sentences?.length) {
return [widgetExample.source_sentence, ...widgetExample.sentences];
}
}
export const sentenceTransformers = (model: ModelData): string[] => {
const remote_code_snippet = model.tags.includes(TAG_CUSTOM_CODE) ? ", trust_remote_code=True" : "";
if (model.tags.includes("cross-encoder") || model.pipeline_tag == "text-ranking") {
return [
`from sentence_transformers import CrossEncoder
model = CrossEncoder("${model.id}"${remote_code_snippet})
query = "Which planet is known as the Red Planet?"
passages = [
"Venus is often called Earth's twin because of its similar size and proximity.",
"Mars, known for its reddish appearance, is often referred to as the Red Planet.",
"Jupiter, the largest planet in our solar system, has a prominent red spot.",
"Saturn, famous for its rings, is sometimes mistaken for the Red Planet."
]
scores = model.predict([(query, passage) for passage in passages])
print(scores)`,
];
}
const exampleSentences = get_widget_examples_from_st_model(model) ?? [
"The weather is lovely today.",
"It's so sunny outside!",
"He drove to the stadium.",
];
return [
`from sentence_transformers import SentenceTransformer
model = SentenceTransformer("${model.id}"${remote_code_snippet})
sentences = ${JSON.stringify(exampleSentences, null, 4)}
embeddings = model.encode(sentences)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [${exampleSentences.length}, ${exampleSentences.length}]`,
];
};
export const setfit = (model: ModelData): string[] => [
`from setfit import SetFitModel
model = SetFitModel.from_pretrained("${model.id}")`,
];
export const spacy = (model: ModelData): string[] => [
`!pip install https://huggingface.co/${model.id}/resolve/main/${nameWithoutNamespace(model.id)}-any-py3-none-any.whl
# Using spacy.load().
import spacy
nlp = spacy.load("${nameWithoutNamespace(model.id)}")
# Importing as module.
import ${nameWithoutNamespace(model.id)}
nlp = ${nameWithoutNamespace(model.id)}.load()`,
];
export const span_marker = (model: ModelData): string[] => [
`from span_marker import SpanMarkerModel
model = SpanMarkerModel.from_pretrained("${model.id}")`,
];
export const stanza = (model: ModelData): string[] => [
`import stanza
stanza.download("${nameWithoutNamespace(model.id).replace("stanza-", "")}")
nlp = stanza.Pipeline("${nameWithoutNamespace(model.id).replace("stanza-", "")}")`,
];
const speechBrainMethod = (speechbrainInterface: string) => {