Skip to content

Commit fbb27b3

Browse files
committed
add some papers
1 parent db85582 commit fbb27b3

File tree

1 file changed

+13
-18
lines changed

1 file changed

+13
-18
lines changed

linkreview.md

+13-18
Original file line numberDiff line numberDiff line change
@@ -1,12 +1,15 @@
1+
[[ход работы]]
12
# other NAS
2-
| Title | Year | Source | Description |
3-
| :-------------------------------------------------------------------------- | ---: | :--------------------------------------------------------------------------------------------------------------------------------------- | :-------------------------------------------------------------------------------- |
4-
| Neural Architecture Search with Reinforcement Learning | 2014 | [paper](https://arxiv.org/abs/1611.01578) | Поиск архитектуры сети с использованием обучения с подкреплением с основой на RNN |
5-
| Handbook of Evolutionary Computation | 1997 | [paper](https://www.taylorfrancis.com/books/edit/10.1201/9780367802486/handbook-evolutionary-computation-fogel-michalewicz-thomas-baeck) | --- |
6-
| SNAS: STOCHASTIC NEURAL ARCHITECTURE SEARCH | 2020 | [papeer](https://arxiv.org/pdf/1812.09926) | |
7-
| Auto-Keras: An Efficient Neural Architecture Search System | 2019 | [paper](https://sci-hub.gg/10.1145/3292500.3330648) | Поиск архитектуры на основе байесовской оптимизации. |
8-
| Neural Architecture Search with Bayesian Optimisation and Optimal Transport | 2018 | [paper](https://proceedings.neurips.cc/paper_files/paper/2018/file/f33ba15effa5c10e873bf3842afb46a6-Paper.pdf) | Поиск архитектуры на основе байесовской оптимизации. |
9-
| Neural predictor for<br>neural architecture search | 2019 | [paper](https://arxiv.org/pdf/1912.00848) | Пример использования GNN в качестве суррогатной функции |
3+
| Title | Year | Source | Description |
4+
| :-------------------------------------------------------------------------- | ---: | :--------------------------------------------------------------------------------------------------------------------------------------- | :------------------------------------------------------------------------------------------------------------------------------ |
5+
| Neural Architecture Search with Reinforcement Learning | 2014 | [paper](https://arxiv.org/abs/1611.01578) | Поиск архитектуры сети с использованием обучения с подкреплением с основой на RNN |
6+
| Handbook of Evolutionary Computation | 1997 | [paper](https://www.taylorfrancis.com/books/edit/10.1201/9780367802486/handbook-evolutionary-computation-fogel-michalewicz-thomas-baeck) | --- |
7+
| SNAS: STOCHASTIC NEURAL ARCHITECTURE SEARCH | 2020 | [papeer](https://arxiv.org/pdf/1812.09926) | |
8+
| Auto-Keras: An Efficient Neural Architecture Search System | 2019 | [paper](https://sci-hub.gg/10.1145/3292500.3330648) | Поиск архитектуры на основе байесовской оптимизации. |
9+
| Neural Architecture Search with Bayesian Optimisation and Optimal Transport | 2018 | [paper](https://proceedings.neurips.cc/paper_files/paper/2018/file/f33ba15effa5c10e873bf3842afb46a6-Paper.pdf) | Поиск архитектуры на основе байесовской оптимизации. |
10+
| Neural predictor for<br>neural architecture search | 2019 | [paper](https://arxiv.org/pdf/1912.00848) | Пример использования GNN в качестве суррогатной функции |
11+
| Few-shot Neural Architecture Search | 2021 | [paper](https://proceedings.mlr.press/v139/zhao21d/zhao21d.pdf) | Использование нескольких supernet чтобы избежать обучения моделей для обучения моделей для обучения суррогатной функции с нуля. |
12+
| Neural Predictor for Neural Architecture Search | 2019 | [paper](https://arxiv.org/pdf/1912.00848) | Использование GCN для предсказания perfomance модели |
1013

1114

1215
# NES
@@ -15,9 +18,6 @@
1518
| Neural Ensemble Search for Uncertainty Estimation and Dataset Shift | 2021 | [paper](https://proceedings.neurips.cc/paper_files/paper/2021/hash/41a6fd31aa2e75c3c6d427db3d17ea80-Abstract.html) | Представлены два метода построения ансамбля нейронных моделей в случае сдвига в данных, также есть подробный обзор статей посвященных NES |
1619
| Neural ensemble search via Bayesian sampling | 2022 | [paper](https://proceedings.mlr.press/v180/shu22a/shu22a.pdf) | Пример современного составления ансамбля |
1720
| One-Shot Neural Ensemble Architecture Search by Diversity-Guided<br>Search Space Shrinking | 2021 | [paper](https://openaccess.thecvf.com/content/CVPR2021/papers/Chen_One-Shot_Neural_Ensemble_Architecture_Search_by_Diversity-Guided_Search_Space_Shrinking_CVPR_2021_paper.pdf) | Пример современного составления ансамбля |
18-
| Multi-headed neural ensemble search | 2021 | [paper](https://arxiv.org/abs/2107.04369) | ансамбли лучше |
19-
| Ensemble Methods as a Defense to Adversarial Perturbations Against Deep Neural Networks | 2017 | [paper](https://arxiv.org/abs/1709.03423) | ансамбли лучше |
20-
2121

2222
# ENAS
2323
| Title | Year | Source | Description |
@@ -47,15 +47,10 @@
4747
| DARTS: Differentiable Architecture Search | 2020 | [paper](https://arxiv.org/abs/1806.09055) | - |
4848
| Brain tumor detection using CNN, AlexNet & GoogLeNet ensembling learning approaches | 2023 | [paper](https://www.researchgate.net/publication/369308467_Brain_tumor_detection_using_CNN_AlexNet_GoogLeNet_ensembling_learning_approaches) | - |
4949
| Combining global and local surrogate models to accelerate evolutionary optimization | 2006 | [paper](https://www.researchgate.net/publication/3421747_Combining_global_and_local_surrogate_models_to_accelerate_evolutionary_optimization_IEEE_Trans_Syst_Man_Cybern_Part_C_Appl_Rev) | - |
50-
| A Density-Based Algorithm for Discovering Clusters<br>in Large Spatial Databases with Noise | 1996 | [paper](https://cdn.aaai.org/KDD/1996/KDD96-037.pdf) | DBSCAN original paper |
50+
| A Density-Based Algorithm for Discovering Clusters<br>in Large Spatial Databaseswith Noise | 1996 | [paper](https://cdn.aaai.org/KDD/1996/KDD96-037.pdf) | DBSCAN original paper |
5151
| Adam: A Method for Stochastic Optimization | 2014 | [paper](https://arxiv.org/abs/1412.6980) | Adam original paper |
5252
| Ensemble Classification and Regression-Recent Developments, Applications and Future Directions | 2016 | [paper](https://www.researchgate.net/profile/Le-Zhang-61/publication/290476291_Ensemble_Classification_and_Regression-Recent_Developments_Applications_and_Future_Directions_Review_Article/links/5c0a1b8fa6fdcc494fdf7e43/Ensemble-Classification-and-Regression-Recent-Developments-Applications-and-Future-Directions-Review-Article.pdf) | Рассказывается о преимуществах ансамблей над одиночными моделями при различном использовании. |
5353
| Semi-Supervised Classification with Graph Convolutional Networks | 2016 | [paper](https://arxiv.org/abs/1609.02907) | Оригинальная статья посвященная GCN |
5454
| [Simple and scalable predictive uncertainty estimation using deep ensembles](https://proceedings.neurips.cc/paper_files/paper/2017/hash/9ef2ed4b7fd2c810847ffa5fa85bce38-Abstract.html) | 2017 | | Реализация DeepEns -- базового алгоритма составления ансамбля на основе баггинга |
5555
| [**Facenet**: A unified embedding for face recognition and clustering](https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Schroff_FaceNet_A_Unified_2015_CVPR_paper.html) | 2015 | | В статье представлена реализация Triplet loss |
56-
| Brain tumor detection using CNN, AlexNet & GoogLeNet ensembling learning approaches. | 2023 | [paper](https://openurl.ebsco.com/EPDB%3Agcd%3A8%3A34114136/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A178322108&crl=c&link_origin=scholar.google.com) | Пример того, что построние арзитектуры руками сложно |
57-
| Ensemble methods in machine learning. | 2000 | [paper](https://link.springer.com/chapter/10.1007/3-540-45014-9_1) | Ансамбли лучше |
58-
59-
60-
61-
56+
| NAS-Bench-101: Towards Reproducible Neural Architecture Search | 2019 | [paper](https://proceedings.mlr.press/v97/ying19a/ying19a.pdf) | Представление графа с вершинами в виде операций |

0 commit comments

Comments
 (0)