-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagip_padron_de_regimenes_generales.py
141 lines (117 loc) · 4.5 KB
/
agip_padron_de_regimenes_generales.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
from gevent import monkey
import pandas as pd
import sqlalchemy
from bs4 import BeautifulSoup
import rarfile
from urllib.parse import urlparse
import os
import glob
import requests
import grequests
monkey.patch_all(thread=False, select=False)
# https://www.agip.gob.ar/agentes/agentes-de-recaudacion/ib-agentes-recaudacion/padrones/padron-de-regimenes-generales-
DB_HOST = "localhost"
DB_USER = "root"
DB_PASS = "_"
DB_DB = "AFIP"
STORAGE_PATH = 'getFiles/'
request = requests.get('https://www.agip.gob.ar/'
'agentes/agentes-de-recaudacion/'
'ib-agentes-recaudacion/padrones/'
'padron-de-regimenes-generales-')
content = BeautifulSoup(request.text, "html.parser")
links = content.findAll("a", href=True)
urls = []
for link in links:
if '/filemanager/source/' in link['href']:
if urlparse(link['href']).netloc == '':
urls.append('https://www.agip.gob.ar' + link['href'])
else:
urls.append(link['href'])
print(urls)
requests = (grequests.get(u) for u in urls)
responses = grequests.map(requests)
for response in responses:
if 199 < response.status_code < 400:
mimetype = response.headers['Content-Type']
if mimetype == 'application/x-rar-compressed':
extension = '.rar'
else:
quit('Extension no reconocida')
filename = response.headers['ETag'].replace('"', "") + extension
open(STORAGE_PATH + filename, 'wb').write(response.content)
extension = '.rar'
os.chdir(STORAGE_PATH)
print("*" + extension)
for file in glob.glob("*" + extension):
rf = rarfile.RarFile(file)
rf.extractall('.')
if os.path.isfile(STORAGE_PATH + file):
os.remove(STORAGE_PATH + file)
os.remove(file)
header = ['FechaDePublicacion',
'FechaVigenciaDesde',
'FechaVigenciaHasta',
'CUIT',
'TipoConstanciaInscripcion',
'MarcaAltaSujeto',
'MarcaAlicuota',
'AlicuotaPercepcion',
'AlicuotaRetencion',
'NroGrupoPercepcion',
'NroGrupoRetencion',
'RazonSocial']
dtypes = {'CUIT': 'int64',
'AlicuotaPercepcion': 'float16',
'AlicuotaRetencion': 'float16',
'NroGrupoPercepcion': 'int16',
'NroGrupoRetencion': 'int16'}
frame = pd.DataFrame()
lst = []
for file in glob.glob("*.txt"):
df_temp = pd.read_csv(file,
encoding='ISO-8859-1',
names=header,
header=None,
delimiter=';',
on_bad_lines='skip',
decimal=",",
index_col='CUIT',
na_values='')
lst.append(df_temp)
os.remove(file)
del df_temp
df = pd.concat(lst)
# Dataframe Cleaning
del lst
df = df[~df.index.duplicated(keep='first')]
df["FechaDePublicacion"] = pd.to_datetime(df["FechaDePublicacion"],
format='%d%m%Y')
df["FechaVigenciaDesde"] = pd.to_datetime(df["FechaVigenciaDesde"],
format='%d%m%Y')
df["FechaVigenciaHasta"] = pd.to_datetime(df["FechaVigenciaHasta"],
format='%d%m%Y')
df['RazonSocial'] = df['RazonSocial'].str.replace("#", " ")
df['RazonSocial'] = df['RazonSocial'].str.strip()
df['RazonSocial'] = df['RazonSocial'].str.encode("utf-8")
df = df.replace(r'^\s*$', pd.NA, regex=True)
df.dropna(subset=['RazonSocial'], inplace=True)
engine = sqlalchemy.create_engine("mysql://" +
DB_USER + ":" +
DB_PASS + "@" +
DB_HOST + '/' +
DB_DB)
dtype = {'CUIT': sqlalchemy.types.BIGINT(),
'RazonSocial': sqlalchemy.types.VARCHAR(length=170),
'FechaDePublicacion': sqlalchemy.types.DATE(),
'FechaVigenciaDesde': sqlalchemy.types.DATE(),
'FechaVigenciaHasta': sqlalchemy.types.DATE(),
'TipoConstanciaInscripcion': sqlalchemy.types.VARCHAR(length=1),
'MarcaAltaSujeto': sqlalchemy.types.VARCHAR(length=1),
'MarcaAlicuota': sqlalchemy.types.VARCHAR(length=1),
'AlicuotaPercepcion': sqlalchemy.types.FLOAT(),
'AlicuotaRetencion': sqlalchemy.types.FLOAT(),
'NroGrupoPercepcion': sqlalchemy.types.INTEGER(),
'NroGrupoRetencion': sqlalchemy.types.INTEGER(),
}
df.to_sql('AgipRegistro', con=engine, if_exists='append', dtype=dtype)