forked from QuantConnect/Lean
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRawPricesUniverseRegressionAlgorithm.cs
140 lines (125 loc) · 5.43 KB
/
RawPricesUniverseRegressionAlgorithm.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using QuantConnect.Data.UniverseSelection;
using QuantConnect.Interfaces;
using QuantConnect.Orders.Fees;
using QuantConnect.Securities;
using System;
using System.Collections.Generic;
namespace QuantConnect.Algorithm.CSharp
{
/// <summary>
/// In this algorithm we demonstrate how to use the UniverseSettings
/// to define the data normalization mode (raw)
/// </summary>
/// <meta name="tag" content="using data" />
/// <meta name="tag" content="universes" />
/// <meta name="tag" content="coarse universes" />
/// <meta name="tag" content="regression test" />
public class RawPricesUniverseRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
public override void Initialize()
{
// what resolution should the data *added* to the universe be?
UniverseSettings.Resolution = Resolution.Daily;
// Use raw prices
UniverseSettings.DataNormalizationMode = DataNormalizationMode.Raw;
SetStartDate(2014,3,24);
SetEndDate(2014,4,7);
SetCash(50000);
// Set the security initializer with zero fees and price initial seed
var securitySeeder = new FuncSecuritySeeder(GetLastKnownPrices);
SetSecurityInitializer(new CompositeSecurityInitializer(
new FuncSecurityInitializer(x => x.SetFeeModel(new ConstantFeeModel(0))),
new FuncSecurityInitializer(security => securitySeeder.SeedSecurity(security))));
AddUniverse("MyUniverse", Resolution.Daily, SelectionFunction);
}
public IEnumerable<string> SelectionFunction(DateTime dateTime)
{
return dateTime.Day % 2 == 0
? new[] { "SPY", "IWM", "QQQ" }
: new[] { "AIG", "BAC", "IBM" };
}
// this event fires whenever we have changes to our universe
public override void OnSecuritiesChanged(SecurityChanges changes)
{
foreach (var security in changes.RemovedSecurities)
{
if (security.Invested)
{
Liquidate(security.Symbol);
}
}
// we want 20% allocation in each security in our universe
foreach (var security in changes.AddedSecurities)
{
SetHoldings(security.Symbol, 0.2m);
}
}
/// <summary>
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
/// </summary>
public bool CanRunLocally { get; } = true;
/// <summary>
/// This is used by the regression test system to indicate which languages this algorithm is written in.
/// </summary>
public List<Language> Languages { get; } = new() { Language.CSharp, Language.Python };
/// <summary>
/// Data Points count of all timeslices of algorithm
/// </summary>
public long DataPoints => 156;
/// <summary>
/// Data Points count of the algorithm history
/// </summary>
public int AlgorithmHistoryDataPoints => 150;
/// <summary>
/// Final status of the algorithm
/// </summary>
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
/// <summary>
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
/// </summary>
public Dictionary<string, string> ExpectedStatistics => new Dictionary<string, string>
{
{"Total Orders", "57"},
{"Average Win", "0.18%"},
{"Average Loss", "-0.24%"},
{"Compounding Annual Return", "-47.380%"},
{"Drawdown", "2.500%"},
{"Expectancy", "-0.352"},
{"Start Equity", "50000"},
{"End Equity", "48726.48"},
{"Net Profit", "-2.547%"},
{"Sharpe Ratio", "-3.372"},
{"Sortino Ratio", "-3.889"},
{"Probabilistic Sharpe Ratio", "10.352%"},
{"Loss Rate", "63%"},
{"Win Rate", "37%"},
{"Profit-Loss Ratio", "0.75"},
{"Alpha", "-0.208"},
{"Beta", "0.815"},
{"Annual Standard Deviation", "0.086"},
{"Annual Variance", "0.007"},
{"Information Ratio", "-4.871"},
{"Tracking Error", "0.039"},
{"Treynor Ratio", "-0.357"},
{"Total Fees", "$0.00"},
{"Estimated Strategy Capacity", "$230000000.00"},
{"Lowest Capacity Asset", "AIG R735QTJ8XC9X"},
{"Portfolio Turnover", "77.40%"},
{"OrderListHash", "4fb8ffbdfd2cce69ac28b0d0992d7198"}
};
}
}