-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathComputads.agda
794 lines (685 loc) · 35.4 KB
/
Computads.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
{-
Author : Ioannis Markakis (github.com/jmarkakis)
with significant help by Alex Rice (github.com/alexarice)
-}
module Computads where
open import Axiom.Extensionality.Propositional
open import Axiom.UniquenessOfIdentityProofs
open import Data.Bool renaming (true to tt; false to ff)
open import Data.List
open import Data.Nat renaming (ℕ to Nat)
open import Data.Nat.Properties
open import Data.Product
open import Function
open import Level using (Level; Lift; lift)
renaming (suc to lsuc; zero to lzero; _⊔_ to lmax)
open import Relation.Binary.Definitions
open import Relation.Binary.PropositionalEquality
open Relation.Binary.PropositionalEquality.≡-Reasoning
open import Relation.Nullary.Decidable
--------------------------------------------------------------------------------
-- This file contains the formalisation of the definition in Section 3.1 of
-- "Computads for weak ω-categories as an inductive type" by C. J. Dean,
-- E. Finster, I. Markakis, D. Reutter, and J. Vicary (arXiv:2208.08719).
-- For the formalisation, we will use function extensionality
-- and uniqueness of identity proofs. We will start by an easy lemma on the
-- identity of iterated Σ-types
postulate
ExtΠ : {ℓ : Level} → Axiom.Extensionality.Propositional.Extensionality ℓ ℓ
Ext≡ : {ℓ : Level}{A : Set ℓ} → Axiom.UniquenessOfIdentityProofs.UIP A
cong₃ : {ℓ : Level}{A B D : Set ℓ}{C : (a : A) → B → Set ℓ}{a a' : A}{b b' : B}
{c : C a b}(f : (a : A) → (b : B) →(c : C a b) → D){c' : C a' b'}(pa : a ≡ a')
(pb : b ≡ b')(pc : subst₂ C pa pb c ≡ c') → f a b c ≡ f a' b' c'
cong₃ f refl refl refl = refl
ExtΣ : {ℓ : Level}{A B : Set ℓ}{C : A → B → Set ℓ}{a a' : A}{b b' : B}
{c : C a b}{c' : C a' b'}
(pa : a ≡ a')(pb : b ≡ b')(pc : subst₂ C pa pb c ≡ c' ) →
(a , b , c) ≡ (a' , b' , c')
ExtΣ = cong₃ (λ a b c → a , b , c)
{- Section 2, "Batanin Trees" -}
--------------------------------------------------------------------------------
-- We start by defining Batanin trees and their dimension. We also give an
-- inductive definition of the globular set of positions of a Batanin tree B,
-- which amounts to the recursive formulae
-- Pos (br []) = D_0
-- Pos (br (B ∷ L)) = (Σ Pos B) ∨ Pos (br L)
-- where D_0 is the globular set with unique 0-cell and no higher cells, and Σ
-- and ∨ denote the suspension and the wedge sum of globular sets respectively.
-- We will denote the source and boundary of a positive-dimensional position p
-- by (bdryPos ff p) and (bdryPos tt p) respectively, and we will show that they
-- satisfy the globularity condition.
data Bat : Set where
br : List Bat → Bat
dim : Bat → Nat
dim (br []) = zero
dim (br (B ∷ L)) = suc (dim B ) ⊔ dim (br L)
data Pos : Nat → Bat → Set where
init : (B : Bat) → Pos 0 B
inl : {n : Nat}(B : Bat)(L : List Bat)(p : Pos n B) → Pos (suc n) (br (B ∷ L))
inr : {n : Nat}(B : Bat)(L : List Bat)(q : Pos n (br L)) → Pos n (br (B ∷ L))
bdryPos : {n : Nat}{B : Bat} → Bool → Pos (suc n) B → Pos n B
bdryPos b (inr B L q) = inr B L (bdryPos b q)
bdryPos {zero} ff (inl B L p) = init (br (B ∷ L))
bdryPos {zero} tt (inl B L p) = inr B L (init (br L))
bdryPos {suc n} b (inl B L p) = inl B L (bdryPos b p)
globPos : {n : Nat}{B : Bat}(p : Pos (suc (suc n)) B)(b : Bool)
→ bdryPos b (bdryPos ff p) ≡ bdryPos b (bdryPos tt p)
globPos {zero} (inl B L p) ff = refl
globPos {zero} (inl B L p) tt = refl
globPos {suc n} (inl B L p) b = cong (inl B L) (globPos p b)
globPos (inr B L q) b = cong (inr B L) (globPos q b)
--------------------------------------------------------------------------------
-- We introduce the subsets of source boudnary and target boundary positions of
-- a Batanin tree B denoted by (bdryPosSet ff) and (bdryPosSet tt) respectively.
-- Here we encode subsets as predicates on positions. We recall from the paper
-- that the unique position of br [] is both source and target boundary. For the
-- positions of br (B ∷ L), we see from the definition of ∂Pos that
-- (1) init(br (B ∷ L)) is not the target of any position, but it is the source
-- of inl B L (init B), so it is source boundary but not target boundary.
-- (2) a position of the form (inl B L p) can only be the source or target of a
-- position of the same form, so it is source or target boundary if and only if
-- p is source or target boundary respectively.
-- (3) a position of the form (inr B L q) can only be the source of a position
-- of the same form, so it is target boundary if and only if q is target
-- boundary. Similarly it is source boundary if and only if q is source
-- boundary and q ̸= init (br L). The latter condition is necessary because
-- inr B L (init (br L)) is the target of (inl B L (init B)) and hence is not
-- source boundary.
bdryPosSet : {B : Bat}{n : Nat} → Bool → Pos n B → Bool
bdryPosSet {br []} b p = tt
bdryPosSet {br (B ∷ L)} ff (init .(br (B ∷ L))) = tt
bdryPosSet {br (B ∷ L)} tt (init .(br (B ∷ L))) = ff
bdryPosSet {br (B ∷ L)} b (inl .B .L p) = bdryPosSet b p
bdryPosSet {br (B ∷ L)} ff (inr .B .L (init (br .L))) = ff
bdryPosSet {br (B ∷ L)} ff (inr .B .L q) = bdryPosSet ff q
bdryPosSet {br (B ∷ L)} tt (inr .B .L q) = bdryPosSet tt q
--------------------------------------------------------------------------------
-- For the definition of full spheres of a Batanin tree below, we will need to
-- compute the support of terms over computads generated by globular sets of
-- positions of Batanin trees. Those are either singletons or computed
-- recursively as unions of subsets indexed by the positions of some tree. Since
-- we use predicates to encode subsets, we need to show that the sets Pos n B
-- have decidable equality (to define singletons) and to compute suprema of
-- Booleans indexed by positions (to define unions).
injectivity-of-inl : {n : Nat}{B : Bat}{L : List Bat}{p p' : Pos n B}
→ inl B L p ≡ inl B L p' → p ≡ p'
injectivity-of-inl refl = refl
injectivity-of-inr : {n : Nat}{B : Bat}{L : List Bat}{q q' : Pos n (br L)}
→ inr B L q ≡ inr B L q' → q ≡ q'
injectivity-of-inr refl = refl
DecEqPos : {n : Nat}{B : Bat} → DecidableEquality (Pos n B)
DecEqPos (init B) (init .B) = yes refl
DecEqPos (inl B L p) (inl .B .L p') with DecEqPos p p'
... | yes p=p' = yes (cong (inl B L) p=p')
... | no p≠p' = no λ h → p≠p' (injectivity-of-inl h)
DecEqPos (inr B L q) (inr .B .L q') with DecEqPos q q'
... | yes q=q' = yes (cong (inr B L) q=q')
... | no q≠q' = no λ h → q≠q' (injectivity-of-inr h)
DecEqPos (inr B L q) (init .(br (B ∷ L))) = no λ ()
DecEqPos (init .(br (B ∷ L))) (inr B L y) = no λ ()
DecEqPos (inr B L q) (inl .B .L p) = no λ ()
DecEqPos (inl B L p) (inr .B .L q) = no λ ()
Singleton : {n : Nat}{B : Bat}(p : Pos n B) → Pos n B → Bool
Singleton p p' = isYes (DecEqPos p p')
suprBool : {n : Nat}{B : Bat}(f : Pos n B → Bool) → Bool
suprBool {zero} {br []} f = f (init (br []))
suprBool {suc n} {br []} f = ff
suprBool {zero} {br (B ∷ L)} f =
f (init (br (B ∷ L))) ∨ suprBool (λ q → f (inr B L q))
suprBool {suc n} {br (B ∷ L)} f =
suprBool (λ p → f (inl B L p)) ∨ suprBool (λ q → f (inl B L q))
Union : {u : Level}{n : Nat}{B : Bat}{X : Set u}(S : Pos n B → X → Bool)
→ X → Bool
Union S x = suprBool (λ p → S p x)
--------------------------------------------------------------------------------
-- We will now introduce by induction on the dimension n:
-- (1) the category gSetₙ of n-globular sets
-- (2) the truncation functor gSetTrₙ : gSetₙ₊₁ → gSetₙ forgetting the
-- top-dimensional cells of an (n+1)-globular set
-- (3) the functor gSetCellₙ : gSetₙ → Set returning the set of top-dimensional
-- cells of an n-globular set
-- (4) the functor gSetSphereₙ : gSetₙ → Set returning the set of pairs of
-- top-dimensional cells of an n-globular set
-- (5) the natural transformation gSetBdryₙ : gSetCellₙ₊₁ ⇒ gSetSphereₙ ∘ gSetTrₙ
-- sending a top-dimensional cell to the pair of its source and target cells
-- Before stating the definitions, we observe that an (n+1)-globular set is
-- an n-globular set X together with a set Xₙ₊₁ and a a source/target function
-- Xₙ₊₁ → gSetSphereₙ X.
{-1-}
gSet : (ℓ : Level)(n : Nat) → Set (lsuc ℓ)
gSetM : {ℓ : Level}{n : Nat}(X Y : gSet ℓ n) → Set ℓ
gSet∘ : {ℓ : Level}{n : Nat}{X Y Z : gSet ℓ n}(f : gSetM Y Z)(g : gSetM X Y)
→ gSetM X Z
gSetId : {ℓ : Level}{n : Nat}{X : gSet ℓ n} → gSetM X X
gSetAss : {ℓ : Level}{n : Nat}{X Y Z W : gSet ℓ n}(f : gSetM Z W)
(g : gSetM Y Z)(h : gSetM X Y) → gSet∘ f (gSet∘ g h) ≡ gSet∘ (gSet∘ f g) h
gSetLu : {ℓ : Level}{n : Nat}{X Y : gSet ℓ n}(f : gSetM X Y)
→ gSet∘ gSetId f ≡ f
gSetRu : {ℓ : Level}{n : Nat}{X Y : gSet ℓ n}(f : gSetM X Y)
→ gSet∘ f gSetId ≡ f
{-2-}
gSetTr : {ℓ : Level}{n : Nat}(X : gSet ℓ (suc n)) → gSet ℓ n
gSetTrM : {ℓ : Level}{n : Nat}{X Y : gSet ℓ (suc n)}(f : gSetM X Y)
→ gSetM (gSetTr X) (gSetTr Y)
gSetTr∘ : {ℓ : Level}{n : Nat}{X Y Z : gSet ℓ (suc n)}(f : gSetM Y Z)
(g : gSetM X Y) → gSet∘ (gSetTrM f) (gSetTrM g) ≡ gSetTrM (gSet∘ f g)
gSetTrId : {ℓ : Level}{n : Nat}{X : gSet ℓ (suc n)}
→ gSetTrM (gSetId {X = X}) ≡ gSetId
{-3-}
gSetCell : {ℓ : Level}{n : Nat}(X : gSet ℓ n) → Set ℓ
gSetCellM : {ℓ : Level}{n : Nat}{X Y : gSet ℓ n}(f : gSetM X Y) → gSetCell X
→ gSetCell Y
gSetCell∘ : {ℓ : Level}{n : Nat}{X Y Z : gSet ℓ n}(f : gSetM Y Z)(g : gSetM X Y)
→ (gSetCellM f) ∘ (gSetCellM g) ≡ gSetCellM (gSet∘ f g)
gSetCellId : {ℓ : Level}{n : Nat}{X : gSet ℓ n}
→ gSetCellM (gSetId {X = X}) ≡ id
{-4-}
gSetSphere : {ℓ : Level}{n : Nat}(X : gSet ℓ n) → Set ℓ
gSetSphereM : {ℓ : Level}{n : Nat}{X Y : gSet ℓ n}(f : gSetM X Y) → gSetSphere X
→ gSetSphere Y
gSetSphere∘ : {ℓ : Level}{n : Nat}{X Y Z : gSet ℓ n}(f : gSetM Y Z)
(g : gSetM X Y) → (gSetSphereM f) ∘ (gSetSphereM g) ≡ gSetSphereM (gSet∘ f g)
gSetSphereId : {ℓ : Level}{n : Nat}{X : gSet ℓ n}
→ gSetSphereM (gSetId {X = X}) ≡ id
{-5-}
gSetBdry : {ℓ : Level}{n : Nat}(X : gSet ℓ (suc n))(x : gSetCell X)
→ gSetSphere (gSetTr X)
gSetBdryM : {ℓ : Level}{n : Nat}{X Y : gSet ℓ (suc n)}(f : gSetM X Y)
→ (gSetBdry Y) ∘ (gSetCellM f) ≡ (gSetSphereM (gSetTrM f)) ∘ (gSetBdry X)
--------------------------------------------------------------------------------
-- Having declared all the data that we will define mutually recursively, we
-- proceed to give their actual definitions.
gSet ℓ zero = Set ℓ
gSet ℓ (suc n) =
Σ[ X ∈ gSet ℓ n ]
Σ[ Xₙ₊₁ ∈ Set ℓ ]
(Xₙ₊₁ → gSetSphere X)
gSetTr (X , _) = X
gSetCell {n = zero} X = X
gSetCell {n = suc n} (_ , Xₙ₊₁ , _) = Xₙ₊₁
gSetBdry (_ , _ , φ)= φ
gSetSphere {n = zero} X = X × X
gSetSphere {n = suc n} X =
Σ[ s ∈ gSetCell X ]
Σ[ t ∈ gSetCell X ]
gSetBdry X s ≡ gSetBdry X t
gSetM {n = zero} X Y = X → Y
gSetM {n = suc n} (X , Xₙ₊₁ , φX) (Y , Yₙ₊₁ , φY) =
Σ[ f ∈ gSetM X Y ]
Σ[ fₙ₊₁ ∈ (Xₙ₊₁ → Yₙ₊₁) ]
φY ∘ fₙ₊₁ ≡ (gSetSphereM f) ∘ φX
gSetTrM (f , _)= f
gSetCellM {n = zero} f = f
gSetCellM {n = suc n} (_ , fₙ₊₁ , _) = fₙ₊₁
gSetSphereM {n = zero} f (s , t) = (f s , f t)
gSetSphereM {n = suc n} {X , Xₙ₊₁ , φX} {Y , Yₙ₊₁ , φY} (f , fₙ₊₁ , f∂)
(s , t , φs=φt) = (fₙ₊₁ s , fₙ₊₁ t , (begin
φY (fₙ₊₁ s)
≡⟨ cong-app f∂ s ⟩
(gSetSphereM f) (φX s)
≡⟨ cong (gSetSphereM f) φs=φt ⟩
(gSetSphereM f) (φX t)
≡⟨ sym (cong-app f∂ t) ⟩
φY (fₙ₊₁ t)
∎))
gSetBdryM (_ , _ , ∂f) = ∂f
gSet∘ {n = zero} f g = f ∘ g
gSet∘ {n = suc n} {X , Xₙ₊₁ , φX} {Y , Yₙ₊₁ , φY} {Z , Zₙ₊₁ , φZ} (f , fₙ₊₁ , f∂)
(g , gₙ₊₁ , g∂) = gSet∘ f g , fₙ₊₁ ∘ gₙ₊₁ , ExtΠ λ x → begin
φZ (fₙ₊₁ (gₙ₊₁ x))
≡⟨ cong-app f∂ (gₙ₊₁ x) ⟩
gSetSphereM f (φY (gₙ₊₁ x))
≡⟨ cong (gSetSphereM f) (cong-app g∂ x) ⟩
gSetSphereM f (gSetSphereM g (φX x))
≡⟨ cong-app (gSetSphere∘ f g) (φX x) ⟩
gSetSphereM (gSet∘ f g) (φX x)
∎
gSetTr∘ f g = refl
gSetCell∘ {n = zero} f g = refl
gSetCell∘ {n = suc n} f g = refl
gSetSphere∘ {n = zero} f g = refl
gSetSphere∘ {n = suc n} f g = ExtΠ λ A → ExtΣ refl refl (Ext≡ _ _)
gSetAss {n = zero} f g h = refl
gSetAss {n = suc n} (f , _) (g , _) (h , _) =
ExtΣ (gSetAss f g h) refl (Ext≡ _ _)
gSetId {n = zero} {X} = id
gSetId {n = suc n} {X , Xₙ₊₁ , φX} = gSetId , id ,
ExtΠ λ x → sym (cong-app gSetSphereId (φX x))
gSetTrId = refl
gSetCellId {n = zero} = refl
gSetCellId {n = suc n} = refl
gSetSphereId {n = zero} = refl
gSetSphereId {n = suc n} = ExtΠ λ A → ExtΣ refl refl (Ext≡ _ _)
gSetLu {n = zero} f = refl
gSetLu {n = suc n} (f , _) = ExtΣ (gSetLu f) refl (Ext≡ _ _)
gSetRu {n = zero} f = refl
gSetRu {n = suc n} (f , _) = ExtΣ (gSetRu f) refl (Ext≡ _ _)
--------------------------------------------------------------------------------
-- We will now define by induction on a natural number n, an n-globular set
-- (gSetPos n B) for every Batanin tree B. Those n-globular sets are the
-- truncations of the globular set of positions of B. To define (gSetPos n B)
-- we also introduce in the same induction two auxilliary functions.
gSetPos : (ℓ : Level)(n : Nat)(B : Bat) → gSet ℓ n
gSetPosBdry : {ℓ : Level}{n : Nat}{B : Bat}(p : Pos (suc n) B)
→ gSetSphere (gSetPos ℓ n B)
gSetPosGlob : {ℓ : Level}{n : Nat}{B : Bat}(p p' : Pos (suc n) B)
(par : (b : Bool) → bdryPos b p ≡ bdryPos b p') →
gSetPosBdry {ℓ} p ≡ gSetPosBdry {ℓ} p'
gSetPos ℓ zero B = Lift ℓ (Pos zero B)
proj₁ (gSetPos ℓ (suc n) B) = gSetPos ℓ n B
proj₁ (proj₂ (gSetPos ℓ (suc n) B)) = Lift ℓ (Pos (suc n) B)
proj₂ (proj₂ (gSetPos ℓ (suc n) B)) (lift p) = gSetPosBdry p
gSetPosBdry {ℓ} {n = zero} p = lift (bdryPos ff p) , lift (bdryPos tt p)
gSetPosBdry {ℓ} {n = suc n} p = lift (bdryPos ff p) , lift (bdryPos tt p) ,
gSetPosGlob (bdryPos ff p) (bdryPos tt p) (globPos p)
gSetPosGlob {n = zero} p p' par =
cong₂ _,_ (cong lift (par ff)) (cong lift (par tt))
gSetPosGlob {n = suc n} p p' par =
ExtΣ (cong lift (par ff)) (cong lift (par tt)) (Ext≡ _ _)
{- Section 3.1, "Main Definition" -}
-- We will now define by induction on a natural number n:
-- (1) the category Compₙ of n-computads, generating data for ω-categories, and
-- strict ω-functors between the corresponding ω-categories.
-- (2) the functor Cellₙ : Compₙ → Set returning the set of n-cells of the free
-- ω-category generated by a computad; cells are either generators (var), or
-- images under some homomorphism of liftings coh(B,A,-) of full spheres
-- (explained below)
-- (3) the functor Sphereₙ : Compₙ → Set returning the set of pairs of parallel
-- n-cells of the free ω-category generated by a computad
-- (4) a functor Freeₙ : gSetₙ → Compₙ viewing each globular set as a computad,
-- and each morphism of globular sets as a strict ω-functor.
-- (5) an auxilliary natural transformation
-- posSphereₙ : gSetSphereₙ ⇒ Sphereₙ ∘ Freeₙ sending pairs of parallel cells of
-- a globular set to the same pair of parallel cells, seen as generators of the
-- free ω-category on that globular set.
-- (7) a subset Fullₙ(B) ⊆ Sphereₙ(Freeₙ (gSetPos B)) of full spheres for each
-- Batanin tree B encoded as a (non-decidable) predicate on spheres. Those are
-- analogues of the admissible pairs of arrows of Maltsiniotis and will be given
-- a canonical lift coh(B,A,id).
-- We will also define for positive n,
-- (6) a truncation functor uₙ : Compₙ → Compₙ₋₁ forgetting the top-dimensional
-- generators of an n-computad
-- (7) a natural transformation bdryₙ : Cellₙ ⇒ Sphereₙ₋₁ ∘ uₙ sending an
-- n-cell of the free ω-category generated by a computad to its source and
-- target cells.
record IndData (ℓ : Level)(n : Nat) : Set (lsuc (lsuc ℓ)) where
field
{-1-}
Comp : Set (lsuc ℓ)
CompM : (C D : Comp) → Set ℓ
Comp∘ : {C D E : Comp}(ρ : CompM D E)(σ : CompM C D) → CompM C E
CompAss : {C D E F : Comp}(ρ : CompM E F)(σ : CompM D E)(τ : CompM C D)
→ Comp∘ ρ (Comp∘ σ τ) ≡ Comp∘ (Comp∘ ρ σ) τ
CompId : {C : Comp} → CompM C C
CompLu : {C D : Comp}(σ : CompM C D) → Comp∘ CompId σ ≡ σ
CompRu : {C D : Comp}(σ : CompM C D) → Comp∘ σ CompId ≡ σ
{-2-}
Cell : (C : Comp) → Set ℓ
CellM : {C D : Comp}(σ : CompM C D)(c : Cell C) → Cell D
Cell∘ : {C D E : Comp}(ρ : CompM D E)(σ : CompM C D)
→ (CellM ρ) ∘ (CellM σ) ≡ CellM (Comp∘ ρ σ)
CellId : {C : Comp} → CellM (CompId {C}) ≡ id
{-3-}
Sphere : (C : Comp) → Set ℓ
SphereM : {C D : Comp}(σ : CompM C D)(A : Sphere C) → Sphere D
Sphere∘ : {C D E : Comp}(ρ : CompM D E)(σ : CompM C D)
→ (SphereM ρ) ∘ (SphereM σ) ≡ SphereM (Comp∘ ρ σ)
SphereId : {C : Comp} → SphereM (CompId {C}) ≡ id
{-4-}
Free : (X : gSet ℓ n) → Comp
FreeM : {X Y : gSet ℓ n}(f : gSetM X Y) → CompM (Free X) (Free Y)
Free∘ : {X Y Z : gSet ℓ n}(f : gSetM Y Z)(g : gSetM X Y)
→ Comp∘ (FreeM f) (FreeM g) ≡ FreeM (gSet∘ f g)
FreeId : {X : gSet ℓ n} → FreeM (gSetId {X = X}) ≡ CompId
{-5-}
posSphere : (X : gSet ℓ n)(A : gSetSphere X) → Sphere (Free X)
posSphereM : {X Y : gSet ℓ n}(f : gSetM X Y)
→ (posSphere Y) ∘ (gSetSphereM f) ≡ SphereM (FreeM f) ∘ (posSphere X)
{-6-}
-- In the presence of Uniqueness of Identity Proofs, one can see that
-- (Full A) is actually a proposition, but we will not need that.
Full : {B : Bat}(A : Sphere (Free (gSetPos ℓ n B))) → Set₀
record AllData (ℓ : Level)(n : Nat) : Set (lsuc (lsuc ℓ)) where
field
prev : (pos : n > 0) → IndData ℓ (pred n)
curr : IndData ℓ n
open IndData curr
field
{-7-}
u : (pos : n > 0) → (C : Comp) → IndData.Comp (prev pos)
uM : (pos : n > 0){C D : Comp}(σ : CompM C D) →
IndData.CompM (prev pos) (u pos C) (u pos D)
u∘ : (pos : n > 0){C D E : Comp}(ρ : CompM D E)(σ : CompM C D)
→ IndData.Comp∘ (prev pos) (uM pos ρ) (uM pos σ) ≡ uM pos (Comp∘ ρ σ)
uId : (pos : n > 0){C : Comp}
→ uM pos (CompId {C}) ≡ IndData.CompId (prev pos)
{-8-}
bdry : (pos : n > 0)(C : Comp) → Cell C
→ IndData.Sphere (prev pos) (u pos C)
bdryM : (pos : n > 0){C D : Comp}(σ : CompM C D)
→ (bdry pos D) ∘ (CellM σ) ≡
(IndData.SphereM (prev pos) (uM pos σ)) ∘ (bdry pos C)
{- Section 3.1, "Base case" -}
--------------------------------------------------------------------------------
-- We will define a function Data : (n : Nat) → AllData n recursively on n,
-- whose base step and inductive step contain the definitions of Section 3.1.
-- We begin with the base case n = 0, where Comp = Set, Cell = Free = id and
-- Sphere X = X × X. In order to define full spheres, we will also define the
-- support of a cell of Free (gSetPos B) for Batanin trees B, a subset of the
-- positions of the tree.
module Zero (ℓ : Level) where
open AllData
open IndData
Data : AllData ℓ zero
supp : {B : Bat}
(c : Cell (curr Data) (Free (curr Data) (gSetPos ℓ zero B)))
→ Pos zero B → Bool
prev Data ()
u Data ()
uM Data ()
u∘ Data ()
uId Data ()
bdry Data ()
bdryM Data ()
Comp (curr Data) = Set ℓ
CompM (curr Data) C D = C → D
Comp∘ (curr Data) ρ σ = ρ ∘ σ
CompAss (curr Data) ρ σ τ = refl
CompId (curr Data) = id
CompLu (curr Data) σ = refl
CompRu (curr Data) σ = refl
Cell (curr Data) = id
CellM (curr Data) = id
Cell∘ (curr Data) ρ σ = refl
CellId (curr Data) = refl
Sphere (curr Data) C = C × C
SphereM (curr Data) σ (s , t)= (σ s , σ t)
Sphere∘ (curr Data) ρ σ = refl
SphereId (curr Data) = refl
Free (curr Data) = id
FreeM (curr Data) = id
Free∘ (curr Data) f g = refl
FreeId (curr Data) = refl
posSphere (curr Data) X = id
posSphereM (curr Data) f = refl
Full (curr Data) (s , t) =
(supp s ≡ bdryPosSet ff) × (supp t ≡ bdryPosSet tt)
supp (lift p) = Singleton p
{- Section 3.1, "Inductive Step" -}
--------------------------------------------------------------------------------
-- We proceed now with the inductive step. For that, we assume that all data has
-- been defined for some n, and we define it for n+1. We will define the data in
-- the same order as they are presented in Section 3.3 of the paper.
module Step (ℓ : Level)(n : Nat)(prev : IndData ℓ n) where
{- Section 3.1, "Objects" -}
--------------------------------------------------------------------------------
-- We define first the class of (n+1)-computads and the actions of the forgetful
-- functor and the free functor on objects. We will also define two auxilliary
-- functions returning the top-dimensional generators of a computads, and the
-- function returning their source and target.
Comp : Set (lsuc ℓ)
Comp =
Σ[ C ∈ IndData.Comp prev ]
Σ[ V ∈ Set ℓ ]
(V → IndData.Sphere prev C)
u : Comp → IndData.Comp prev
u (C , _ , _) = C
gen : Comp → Set ℓ
gen (_ , V , _) = V
bdryVar : (C : Comp) → gen C → IndData.Sphere prev (u C)
bdryVar (_ , _ , φ) = φ
Free : gSet ℓ (suc n) → Comp
Free (X , Xₙ₊₁ , φX) =
IndData.Free prev X , Xₙ₊₁ , (IndData.posSphere prev X) ∘ φX
{- Section 3.1, "Morphisms" and "Cells and their boundary" -}
--------------------------------------------------------------------------------
-- We then define inductively-recursively the sets of cells, their boundary
-- spheres, the sets of homomorphisms of computads, and their action of the
-- forgetful functor on morphisms.
CompM : Comp → Comp → Set ℓ
uM : {C D : Comp} → CompM C D → IndData.CompM prev (u C) (u D)
data Cell (C : Comp) : Set ℓ
bdry : (C : Comp) → Cell C → IndData.Sphere prev (u C)
CompM C D =
Σ[ σ ∈ IndData.CompM prev (u C) (u D) ]
Σ[ σV ∈ (gen C → Cell D) ]
(bdry D) ∘ σV ≡ (IndData.SphereM prev σ) ∘ (bdryVar C)
uM (σ , _) = σ
data Cell C where
var : gen C → Cell C
coh : (B : Bat)(A : IndData.Sphere prev (IndData.Free prev (gSetPos ℓ n B)))
(fl : IndData.Full prev A)(τ : CompM (Free (gSetPos ℓ (suc n) B)) C)
→ Cell C
bdry C (var v) = bdryVar C v
bdry C (coh B A fl τ) = IndData.SphereM prev (uM τ) A
{- Section 3.1, "Composition and functoriality of cells" -}
--------------------------------------------------------------------------------
-- Having defined homomorphisms and cells, we may define mutually recursively
-- composition of homomorphisms, the action of homomorphisms on cells and prove
-- naturality of the boundary functions.
Comp∘ : {C D E : Comp}(ρ : CompM D E)(σ : CompM C D) → CompM C E
CellM : {C D : Comp}(σ : CompM C D) → Cell C → Cell D
bdryM : {C D : Comp}(σ : CompM C D)(c : Cell C)
→ bdry D (CellM σ c) ≡ IndData.SphereM prev (uM σ) (bdry C c)
Comp∘ {C} {D} {E} ρ@(ρn , ρV , ∂ρ) σ@(σn , σV , ∂σ) =
IndData.Comp∘ prev ρn σn , CellM ρ ∘ σV , ExtΠ λ v → begin
bdry E (CellM ρ (σV v))
≡⟨ bdryM ρ (σV v) ⟩
IndData.SphereM prev ρn (bdry D (σV v))
≡⟨ cong (IndData.SphereM prev ρn) (cong-app ∂σ v) ⟩
IndData.SphereM prev ρn (IndData.SphereM prev σn (bdryVar C v))
≡⟨ cong-app (IndData.Sphere∘ prev ρn σn) (bdryVar C v) ⟩
IndData.SphereM prev (IndData.Comp∘ prev ρn σn) (bdryVar C v)
∎
CellM (_ , σV , _) (var v) = σV v
CellM σ (coh B A fl τ) = coh B A fl (Comp∘ σ τ)
bdryM (σ , σV , σ∂) (var v) = cong-app σ∂ v
bdryM (σ , σV , σ∂) (coh B A fl τ) =
sym (cong-app (IndData.Sphere∘ prev σ (uM τ)) A)
--------------------------------------------------------------------------------
-- We prove similarly by mutual induction that composition is associtive and
-- the functor Cell preserves the composition operation
CompAss : {C D E F : Comp}(ρ : CompM E F)(σ : CompM D E)(τ : CompM C D)
→ Comp∘ ρ (Comp∘ σ τ) ≡ Comp∘ (Comp∘ ρ σ) τ
Cell∘ : {C D E : Comp}(ρ : CompM D E)(σ : CompM C D)(c : Cell C)
→ CellM ρ (CellM σ c) ≡ CellM (Comp∘ ρ σ) c
CompAss ρ σ τ@(_ , τV , _) = ExtΣ (IndData.CompAss prev (uM ρ) (uM σ) (uM τ))
(ExtΠ λ v → Cell∘ ρ σ (τV v)) (Ext≡ _ _)
Cell∘ ρ σ (var v) = refl
Cell∘ ρ σ (coh B A fl τ) = cong (coh B A fl) (CompAss ρ σ τ)
--------------------------------------------------------------------------------
-- We can now define identities and show that the right unit law holds. The
-- left unit law is proven by mutually induction with preservation of identities
-- by the functor Cell.
CompId : {C : Comp} → CompM C C
CompId {C}= IndData.CompId prev , var ,
ExtΠ λ v → sym (cong-app (IndData.SphereId prev) (bdryVar C v))
CompRu : {C D : Comp}(σ : CompM C D) → Comp∘ σ CompId ≡ σ
CompRu σ = ExtΣ (IndData.CompRu prev (uM σ)) refl (Ext≡ _ _)
CompLu : {C D : Comp}(σ : CompM C D) → Comp∘ CompId σ ≡ σ
CellId : {C : Comp}(c : Cell C) → CellM CompId c ≡ c
CompLu (σ , σV , _) = ExtΣ (IndData.CompLu prev σ)
(ExtΠ λ v → CellId (σV v)) (Ext≡ _ _)
CellId (var v) = refl
CellId (coh B A fl τ) = cong (coh B A fl) (CompLu τ)
--------------------------------------------------------------------------------
-- Having defined both composition and identity operations, we may now show that
-- the forgetful functor is indeed a functor.
u∘ : {C D E : Comp}(ρ : CompM D E)(σ : CompM C D)
→ IndData.Comp∘ prev (uM ρ) (uM σ) ≡ uM (Comp∘ ρ σ)
u∘ ρ σ = refl
uId : {C : Comp} → uM (CompId {C}) ≡ IndData.CompId prev
uId = refl
{- Section 3.1, "Spheres" -}
--------------------------------------------------------------------------------
-- We proceed now to define the functor of spheres.
Sphere : (C : Comp) → Set ℓ
Sphere C = Σ[ s ∈ Cell C ] Σ[ t ∈ Cell C ] (bdry C s ≡ bdry C t)
SphereM : {C D : Comp}(σ : CompM C D)(A : Sphere C) → Sphere D
SphereM {C} {D} σ (s , t , h) = (CellM σ s , CellM σ t , (begin
bdry D (CellM σ s)
≡⟨ bdryM σ s ⟩
IndData.SphereM prev (uM σ) (bdry C s)
≡⟨ cong (IndData.SphereM prev (uM σ)) h ⟩
IndData.SphereM prev (uM σ) (bdry C t)
≡⟨ sym (bdryM σ t) ⟩
bdry D (CellM σ t)
∎))
Sphere∘ : {C D E : Comp}(ρ : CompM D E)(σ : CompM C D)
→ (SphereM ρ) ∘ (SphereM σ) ≡ SphereM (Comp∘ ρ σ)
Sphere∘ ρ σ = ExtΠ λ (s , t , h) → ExtΣ (Cell∘ ρ σ s) (Cell∘ ρ σ t) (Ext≡ _ _)
SphereId : {C : Comp} → SphereM (CompId {C}) ≡ id
SphereId = ExtΠ λ (s , t , h) → ExtΣ (CellId s) (CellId t) (Ext≡ _ _)
{- Section 3.1, "Globular sets" -}
--------------------------------------------------------------------------------
-- We define now the action of Free on morphisms and show that it is functorial.
-- We then define the auxilliary natural transformation posSphere that is used
-- to define Free.
FreeM : {X Y : gSet ℓ (suc n)}(f : gSetM X Y) → CompM (Free X) (Free Y)
FreeM {X} {Y} (f , fₙ₊₁ , f∂) =
(IndData.FreeM prev f , var ∘ fₙ₊₁ , ExtΠ λ x → begin
IndData.posSphere prev (gSetTr Y) (gSetBdry Y (fₙ₊₁ x))
≡⟨ cong (IndData.posSphere prev (gSetTr Y)) (cong-app f∂ x) ⟩
IndData.posSphere prev (gSetTr Y) (gSetSphereM f (gSetBdry X x))
≡⟨ cong-app (IndData.posSphereM prev f) (gSetBdry X x) ⟩
IndData.SphereM prev (IndData.FreeM prev f)
(IndData.posSphere prev (gSetTr X) (gSetBdry X x))
∎)
Free∘ : {X Y Z : gSet ℓ (suc n)}(f : gSetM Y Z)(g : gSetM X Y)
→ Comp∘ (FreeM {Y} {Z} f) (FreeM {X} {Y} g) ≡
FreeM (gSet∘ {ℓ} {suc n} {X} {Y} {Z} f g)
Free∘ {X} {Y} {Z} (f , fₙ₊₁ , f∂) (g , gₙ₊₁ , g∂) =
ExtΣ (IndData.Free∘ prev f g) refl (Ext≡ _ _)
FreeId : {X : gSet ℓ (suc n)} → FreeM (gSetId {X = X}) ≡ CompId
FreeId = ExtΣ (IndData.FreeId prev) refl (Ext≡ _ _)
posSphere : (X : gSet ℓ (suc n))(A : gSetSphere X) → Sphere (Free X)
posSphere X (s , t , h) =
(var s , var t , cong (IndData.posSphere prev (gSetTr X)) h)
posSphereM : {X Y : gSet ℓ (suc n)}(f : gSetM X Y)
→ (posSphere Y) ∘ (gSetSphereM f) ≡ SphereM (FreeM f) ∘ (posSphere X)
posSphereM {X} {Y} (f , fₙ₊₁ , f∂) =
ExtΠ λ (s , t , h) → ExtΣ refl refl (Ext≡ _ _)
{- Section 3.1, "Support" and "Fullness" -}
--------------------------------------------------------------------------------
-- We define now the support of a cell over a Batanin tree, and the set of full
-- spheres.
supp : {B : Bat}(c : Cell (Free (gSetPos ℓ (suc n) B)))
→ Pos (suc n) B → Bool
supp (var (lift p)) = Singleton p
supp (coh B A fl (_ , τV , _)) = Union λ q → supp (τV (lift q))
Full : {B : Bat}(A : Sphere (Free (gSetPos ℓ (suc n) B))) → Set₀
Full {B} (s , t , h) =
(supp s ≡ bdryPosSet ff) ×
(supp t ≡ bdryPosSet tt) ×
(IndData.Full prev (bdry (Free (gSetPos ℓ (suc n) B)) s))
--------------------------------------------------------------------------------
{- Unpacking the definition -}
--------------------------------------------------------------------------------
-- We finally conclude the inductive step by packing the data above into an
-- instance of AllData.
Data : AllData ℓ (suc n)
AllData.prev Data pos = prev
IndData.Comp (AllData.curr Data) = Comp
IndData.CompM (AllData.curr Data) = CompM
IndData.Comp∘ (AllData.curr Data) = Comp∘
IndData.CompAss (AllData.curr Data) = CompAss
IndData.CompId (AllData.curr Data) = CompId
IndData.CompLu (AllData.curr Data) = CompLu
IndData.CompRu (AllData.curr Data) = CompRu
IndData.Cell (AllData.curr Data) = Cell
IndData.CellM (AllData.curr Data) = CellM
IndData.Cell∘ (AllData.curr Data) ρ σ = ExtΠ (Cell∘ ρ σ)
IndData.CellId (AllData.curr Data) = ExtΠ CellId
IndData.Sphere (AllData.curr Data) = Sphere
IndData.SphereM (AllData.curr Data) = SphereM
IndData.Sphere∘ (AllData.curr Data) = Sphere∘
IndData.SphereId (AllData.curr Data) = SphereId
IndData.Free (AllData.curr Data) = Free
IndData.FreeM (AllData.curr Data) = FreeM
IndData.Free∘ (AllData.curr Data) = Free∘
IndData.FreeId (AllData.curr Data) = FreeId
IndData.posSphere (AllData.curr Data) = posSphere
IndData.posSphereM (AllData.curr Data) = posSphereM
IndData.Full (AllData.curr Data) = Full
AllData.u Data _ = u
AllData.uM Data _ = uM
AllData.u∘ Data _ = u∘
AllData.uId Data _ {C} = uId {C}
AllData.bdry Data _ = bdry
AllData.bdryM Data _ σ = ExtΠ (bdryM σ)
--------------------------------------------------------------------------------
-- Having defined both the base case and the inductive step, we can now define
-- the function Data : (n : Nat) → AllData n containing all the defined data,
-- and for ease of further use, we finally unpack the data of Data n.
Data : (ℓ : Level)(n : Nat) → AllData ℓ n
Data ℓ zero = Zero.Data ℓ
Data ℓ (suc n) = Step.Data ℓ n (AllData.curr (Data ℓ n))
{- The categories of n-computads -}
Comp : (ℓ : Level)(n : Nat) → Set (lsuc ℓ)
CompM : {ℓ : Level}{n : Nat}(C D : Comp ℓ n) → Set ℓ
Comp∘ : {ℓ : Level}{n : Nat}{C D E : Comp ℓ n}(ρ : CompM D E)(σ : CompM C D)
→ CompM C E
CompAss : {ℓ : Level}{n : Nat}{C D E F : Comp ℓ n}(ρ : CompM E F)(σ : CompM D E)
(τ : CompM C D) → Comp∘ ρ (Comp∘ σ τ) ≡ Comp∘ (Comp∘ ρ σ) τ
CompId : {ℓ : Level}{n : Nat}{C : Comp ℓ n} → CompM C C
CompLu : {ℓ : Level}{n : Nat}{C D : Comp ℓ n}(σ : CompM C D)
→ Comp∘ CompId σ ≡ σ
CompRu : {ℓ : Level}{n : Nat}{C D : Comp ℓ n}(σ : CompM C D)
→ Comp∘ σ CompId ≡ σ
{- The functors of cells -}
Cell : {ℓ : Level}{n : Nat}(C : Comp ℓ n) → Set ℓ
CellM : {ℓ : Level}{n : Nat}{C D : Comp ℓ n}(σ : CompM C D) → Cell C → Cell D
Cell∘ : {ℓ : Level}{n : Nat}{C D E : Comp ℓ n}(ρ : CompM D E)(σ : CompM C D)
→ (CellM ρ) ∘ (CellM σ) ≡ CellM (Comp∘ ρ σ)
CellId : {ℓ : Level}{n : Nat}{C : Comp ℓ n} → CellM (CompId {C = C}) ≡ id
{- The functors of spheres -}
Sphere : {ℓ : Level}{n : Nat}(C : Comp ℓ n) → Set ℓ
SphereM : {ℓ : Level}{n : Nat}{C D : Comp ℓ n}(σ : CompM C D) → Sphere C
→ Sphere D
Sphere∘ : {ℓ : Level}{n : Nat}{C D E : Comp ℓ n}(ρ : CompM D E)(σ : CompM C D)
→ (SphereM ρ) ∘ (SphereM σ) ≡ SphereM (Comp∘ ρ σ)
SphereId : {ℓ : Level}{n : Nat}{C : Comp ℓ n} → SphereM (CompId {C = C}) ≡ id
{- The free functors -}
Free : {ℓ : Level}{n : Nat}(X : gSet ℓ n) → Comp ℓ n
FreeM : {ℓ : Level}{n : Nat}{X Y : gSet ℓ n}(f : gSetM X Y)
→ CompM (Free X) (Free Y)
Free∘ : {ℓ : Level}{n : Nat}{X Y Z : gSet ℓ n}(f : gSetM Y Z)(g : gSetM X Y)
→ Comp∘ (FreeM f) (FreeM g) ≡ FreeM (gSet∘ f g)
FreeId : {ℓ : Level}{n : Nat}{X : gSet ℓ n} → FreeM (gSetId {X = X}) ≡ CompId
{- The truncation functors -}
u : {ℓ : Level}{n : Nat} → (C : Comp ℓ (suc n)) → Comp ℓ n
uM : {ℓ : Level}{n : Nat}{C D : Comp ℓ (suc n)}(σ : CompM C D)
→ CompM (u C) (u D)
u∘ : {ℓ : Level}{n : Nat}{C D E : Comp ℓ (suc n)}(ρ : CompM D E)(σ : CompM C D)
→ Comp∘ (uM ρ) (uM σ) ≡ uM (Comp∘ ρ σ)
uId : {ℓ : Level}{n : Nat}{C : Comp ℓ (suc n)} → uM (CompId {C = C}) ≡ CompId
{- The boundary natural transformation -}
bdry : {ℓ : Level}{n : Nat}(C : Comp ℓ (suc n)) → Cell C → Sphere (u C)
bdryM : {ℓ : Level}{n : Nat}{C D : Comp ℓ (suc n)}(σ : CompM C D)
→ (bdry D) ∘ (CellM σ) ≡ (SphereM (uM σ)) ∘ (bdry C)
--------------------------------------------------------------------------------
Comp ℓ n = IndData.Comp (AllData.curr (Data ℓ n))
CompM {ℓ} {n} = IndData.CompM (AllData.curr (Data ℓ n))
Comp∘ {ℓ} {n} = IndData.Comp∘ (AllData.curr (Data ℓ n))
CompAss {ℓ} {n} = IndData.CompAss (AllData.curr (Data ℓ n))
CompId {ℓ} {n} = IndData.CompId (AllData.curr (Data ℓ n))
CompLu {ℓ} {n} = IndData.CompLu (AllData.curr (Data ℓ n))
CompRu {ℓ} {n} = IndData.CompRu (AllData.curr (Data ℓ n))
Cell {ℓ} {n} = IndData.Cell (AllData.curr (Data ℓ n))
CellM {ℓ} {n} = IndData.CellM (AllData.curr (Data ℓ n))
Cell∘ {ℓ} {n} = IndData.Cell∘ (AllData.curr (Data ℓ n))
CellId {ℓ} {n} = IndData.CellId (AllData.curr (Data ℓ n))
Sphere {ℓ} {n} = IndData.Sphere (AllData.curr (Data ℓ n))
SphereM {ℓ} {n} = IndData.SphereM (AllData.curr (Data ℓ n))
Sphere∘ {ℓ} {n} = IndData.Sphere∘ (AllData.curr (Data ℓ n))
SphereId {ℓ} {n} = IndData.SphereId (AllData.curr (Data ℓ n))
Free {ℓ} {n} = IndData.Free (AllData.curr (Data ℓ n))
FreeM {ℓ} {n} = IndData.FreeM (AllData.curr (Data ℓ n))
Free∘ {ℓ} {n} = IndData.Free∘ (AllData.curr (Data ℓ n))
FreeId {ℓ} {n} = IndData.FreeId (AllData.curr (Data ℓ n))
u {ℓ} {n} = AllData.u (Data ℓ (suc n)) (s≤s z≤n)
uM {ℓ} {n} = AllData.uM (Data ℓ (suc n)) (s≤s z≤n)
u∘ {ℓ} {n} = AllData.u∘ (Data ℓ (suc n)) (s≤s z≤n)
uId {ℓ} {n} {C} = AllData.uId (Data ℓ (suc n)) (s≤s z≤n) {C}
bdry {ℓ} {n} = AllData.bdry (Data ℓ (suc n)) (s≤s z≤n)
bdryM {ℓ} {n} = AllData.bdryM (Data ℓ (suc n)) (s≤s z≤n)