|
7 | 7 | * int val;
|
8 | 8 | * TreeNode *left;
|
9 | 9 | * TreeNode *right;
|
10 |
| - * TreeNode(int x) : val(x), left(NULL), right(NULL) {} |
| 10 | + * TreeNode() : val(0), left(nullptr), right(nullptr) {} |
| 11 | + * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} |
| 12 | + * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} |
11 | 13 | * };
|
12 | 14 | */
|
13 | 15 | class Solution {
|
14 | 16 | public:
|
15 | 17 | int diameterOfBinaryTree(TreeNode* root) {
|
16 |
| - int diameter = 0; |
17 |
| - depth(root, &diameter); |
18 |
| - return diameter; |
| 18 | + return iter_dfs(root); |
19 | 19 | }
|
20 | 20 |
|
21 | 21 | private:
|
22 |
| - int depth(TreeNode *root, int *diameter) { |
| 22 | + int iter_dfs(TreeNode *node) { |
| 23 | + int result = 0; |
| 24 | + |
| 25 | + vector<function<void()>> stk; |
| 26 | + function<void(TreeNode*, int*)> divide; |
| 27 | + function<void(TreeNode*, shared_ptr<int>&, shared_ptr<int>&, int *)> conquer; |
| 28 | + divide = [&](TreeNode *node, int *ret) { |
| 29 | + if (!node) { |
| 30 | + return; |
| 31 | + } |
| 32 | + auto ret1 = make_shared<int>(), ret2 = make_shared<int>(); |
| 33 | + stk.emplace_back(bind(conquer, node, ret1, ret2, ret)); |
| 34 | + stk.emplace_back(bind(divide, node->right, ret2.get())); |
| 35 | + stk.emplace_back(bind(divide, node->left, ret1.get())); |
| 36 | + }; |
| 37 | + conquer = [&](TreeNode *node, shared_ptr<int> ret1, shared_ptr<int> ret2, int *ret) { |
| 38 | + result = max(result, *ret1 + *ret2); |
| 39 | + *ret = 1 + max(*ret1, *ret2); |
| 40 | + }; |
| 41 | + |
| 42 | + int max_h = 0; |
| 43 | + stk.emplace_back(bind(divide, node, &max_h)); |
| 44 | + while (!stk.empty()) { |
| 45 | + auto cb = move(stk.back()); stk.pop_back(); |
| 46 | + cb(); |
| 47 | + } |
| 48 | + return result; |
| 49 | + } |
| 50 | +}; |
| 51 | + |
| 52 | +// Time: O(n) |
| 53 | +// Space: O(h) |
| 54 | +class Solution2 { |
| 55 | +public: |
| 56 | + int diameterOfBinaryTree(TreeNode* root) { |
| 57 | + return iter_dfs(root); |
| 58 | + } |
| 59 | + |
| 60 | +private: |
| 61 | + int iter_dfs(TreeNode *node) { |
| 62 | + int result = 0, max_h = 0; |
| 63 | + vector<tuple<int, TreeNode *, unique_ptr<int>, unique_ptr<int>, int*>> stk; |
| 64 | + stk.emplace_back(1, node, nullptr, nullptr, &max_h); |
| 65 | + while (!stk.empty()) { |
| 66 | + const auto [step, node, ret1, ret2, ret] = move(stk.back()); stk.pop_back(); |
| 67 | + if (step == 1) { |
| 68 | + if (!node) { |
| 69 | + continue; |
| 70 | + } |
| 71 | + auto ret1 = make_unique<int>(), ret2 = make_unique<int>(); |
| 72 | + auto p1 = ret1.get(), p2 = ret2.get(); |
| 73 | + stk.emplace_back(2, node, move(ret1), move(ret2), ret); |
| 74 | + stk.emplace_back(1, node->right, nullptr, nullptr, p2); |
| 75 | + stk.emplace_back(1, node->left, nullptr, nullptr, p1); |
| 76 | + } else if (step == 2) { |
| 77 | + result = max(result, *ret1 + *ret2); |
| 78 | + *ret = 1 + max(*ret1, *ret2); |
| 79 | + } |
| 80 | + } |
| 81 | + return result; |
| 82 | + } |
| 83 | +}; |
| 84 | + |
| 85 | +// Time: O(n) |
| 86 | +// Space: O(h) |
| 87 | +class Solution3 { |
| 88 | +public: |
| 89 | + int diameterOfBinaryTree(TreeNode* root) { |
| 90 | + return dfs(root).first; |
| 91 | + } |
| 92 | + |
| 93 | +private: |
| 94 | + pair<int, int> dfs(TreeNode *root) { |
23 | 95 | if (!root) {
|
24 |
| - return 0; |
| 96 | + return {0, 0}; |
25 | 97 | }
|
26 |
| - auto left = depth(root->left, diameter); |
27 |
| - auto right = depth(root->right, diameter); |
28 |
| - *diameter = max(*diameter, left + right); |
29 |
| - return 1 + max(left, right); |
| 98 | + const auto& [left_d, left_h] = dfs(root->left); |
| 99 | + const auto& [right_d, right_h] = dfs(root->right); |
| 100 | + return {max({left_d, right_d, left_h + right_h}), 1 + max(left_h, right_h)}; |
30 | 101 | }
|
31 | 102 | };
|
0 commit comments