|
| 1 | +# Time: O(n^2), n = len(r) |
| 2 | +# Space: O(n) |
| 3 | + |
| 4 | +# math, stars and bars, combinatorics |
| 5 | +class Solution(object): |
| 6 | + def countNumbers(self, l, r, b): |
| 7 | + """ |
| 8 | + :type l: str |
| 9 | + :type r: str |
| 10 | + :type b: int |
| 11 | + :rtype: int |
| 12 | + """ |
| 13 | + MOD = 10**9+7 |
| 14 | + fact, inv, inv_fact = [[1]*2 for _ in xrange(3)] |
| 15 | + def nCr(n, k): |
| 16 | + while len(inv) <= n: # lazy initialization |
| 17 | + fact.append(fact[-1]*len(inv) % MOD) |
| 18 | + inv.append(inv[MOD%len(inv)]*(MOD-MOD//len(inv)) % MOD) # https://cp-algorithms.com/algebra/module-inverse.html |
| 19 | + inv_fact.append(inv_fact[-1]*inv[-1] % MOD) |
| 20 | + return (fact[n]*inv_fact[n-k] % MOD) * inv_fact[k] % MOD |
| 21 | + |
| 22 | + def nHr(n, k): |
| 23 | + return nCr(n+k-1, k) |
| 24 | + |
| 25 | + def count(x): |
| 26 | + digits_base = [] |
| 27 | + while x: |
| 28 | + x, r = divmod(x, b) |
| 29 | + digits_base.append(r) |
| 30 | + digits_base.reverse() |
| 31 | + if not digits_base: |
| 32 | + digits_base.append(0) |
| 33 | + result = 0 |
| 34 | + for i in xrange(len(digits_base)): |
| 35 | + if i-1 >= 0 and digits_base[i-1] > digits_base[i]: |
| 36 | + break |
| 37 | + for j in xrange(digits_base[i-1] if i-1 >= 0 else 0, digits_base[i]): |
| 38 | + result = (result + nHr((b-1)-j+1, len(digits_base)-(i+1))) % MOD |
| 39 | + else: |
| 40 | + result = (result+1)%MOD |
| 41 | + return result |
| 42 | + |
| 43 | + return (count(int(r)) - count(int(l)-1)) % MOD |
| 44 | + |
| 45 | + |
| 46 | +# Time: O(n^2), n = len(r) |
| 47 | +# Space: O(n) |
| 48 | +# math, stars and bars, combinatorics |
| 49 | +class Solution2(object): |
| 50 | + def countNumbers(self, l, r, b): |
| 51 | + """ |
| 52 | + :type l: str |
| 53 | + :type r: str |
| 54 | + :type b: int |
| 55 | + :rtype: int |
| 56 | + """ |
| 57 | + MOD = 10**9+7 |
| 58 | + fact, inv, inv_fact = [[1]*2 for _ in xrange(3)] |
| 59 | + def nCr(n, k): |
| 60 | + while len(inv) <= n: # lazy initialization |
| 61 | + fact.append(fact[-1]*len(inv) % MOD) |
| 62 | + inv.append(inv[MOD%len(inv)]*(MOD-MOD//len(inv)) % MOD) # https://cp-algorithms.com/algebra/module-inverse.html |
| 63 | + inv_fact.append(inv_fact[-1]*inv[-1] % MOD) |
| 64 | + return (fact[n]*inv_fact[n-k] % MOD) * inv_fact[k] % MOD |
| 65 | + |
| 66 | + def nHr(n, k): |
| 67 | + return nCr(n+k-1, k) |
| 68 | + |
| 69 | + def decrease(digits): |
| 70 | + for i in reversed(xrange(len(digits))): |
| 71 | + if digits[i]: |
| 72 | + digits[i] -= 1 |
| 73 | + break |
| 74 | + digits[i] = 9 |
| 75 | + |
| 76 | + def divide(digits, base): |
| 77 | + result = [] |
| 78 | + r = 0 |
| 79 | + for d in digits: |
| 80 | + q, r = divmod(r*10+d, base) |
| 81 | + if result or q: |
| 82 | + result.append(q) |
| 83 | + return result, r |
| 84 | + |
| 85 | + def to_base(digits, base): |
| 86 | + result = [] |
| 87 | + while digits: |
| 88 | + digits, r = divide(digits, base) |
| 89 | + result.append(r) |
| 90 | + result.reverse() |
| 91 | + return result |
| 92 | + |
| 93 | + def count(digits): |
| 94 | + digits_base = to_base(digits, b) |
| 95 | + result = 0 |
| 96 | + for i in xrange(len(digits_base)): |
| 97 | + if i-1 >= 0 and digits_base[i-1] > digits_base[i]: |
| 98 | + break |
| 99 | + for j in xrange(digits_base[i-1] if i-1 >= 0 else 0, digits_base[i]): |
| 100 | + result = (result + nHr((b-1)-j+1, len(digits_base)-(i+1))) % MOD |
| 101 | + else: |
| 102 | + result = (result+1)%MOD |
| 103 | + return result |
| 104 | + |
| 105 | + digits_l = map(int, l) |
| 106 | + decrease(digits_l) |
| 107 | + digits_r = map(int, r) |
| 108 | + return (count(digits_r) - count(digits_l)) % MOD |
0 commit comments