Skip to content

Commit 2d1fb04

Browse files
authored
Create count-number-of-balanced-permutations.cpp
1 parent bf7c8b0 commit 2d1fb04

File tree

1 file changed

+72
-0
lines changed

1 file changed

+72
-0
lines changed
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,72 @@
1+
// Time: O(9 * (9 * n / 2) * (n / 2)) = O(n^2)
2+
// Space: O((9 * n / 2) * (n / 2)) = O(n^2)
3+
4+
// dp, combinatorics
5+
class Solution {
6+
public:
7+
int countBalancedPermutations(string num) {
8+
static const uint32_t MOD = 1e9 + 7;
9+
vector<int> fact = {1, 1};
10+
vector<int> inv = {1, 1};
11+
vector<int> inv_fact = {1, 1};
12+
const auto& lazy_init = [&](int n) {
13+
while (size(inv) <= n) { // lazy initialization
14+
fact.emplace_back((static_cast<int64_t>(fact.back()) * size(inv)) % MOD);
15+
inv.emplace_back((static_cast<int64_t>(inv[MOD % size(inv)]) * (MOD - MOD / size(inv))) % MOD); // https://cp-algorithms.com/algebra/module-inverse.html
16+
inv_fact.emplace_back((static_cast<int64_t>(inv_fact.back()) * inv.back()) % MOD);
17+
}
18+
};
19+
20+
const auto& nCr = [&](int n, int k) {
21+
lazy_init(n);
22+
return (((static_cast<int64_t>(fact[n]) * inv_fact[n - k]) % MOD) * inv_fact[k]) % MOD;
23+
};
24+
25+
const auto& factorial = [&](int n) {
26+
lazy_init(n);
27+
return fact[n];
28+
};
29+
30+
const auto& inv_factorial = [&](int n) {
31+
lazy_init(n);
32+
return inv_fact[n];
33+
};
34+
35+
int total = accumulate(cbegin(num), cend(num), 0, [](const auto& accu, const auto& x) {
36+
return accu + (x - '0');
37+
});
38+
if (total % 2) {
39+
return 0;
40+
}
41+
total /= 2;
42+
vector<int> cnt(26);
43+
for (const auto& x : num) {
44+
++cnt[x - '0'];
45+
}
46+
const int even = size(num) / 2;
47+
vector<vector<int>> dp(total + 1, vector<int>(even + 1));
48+
dp[0][0] = 1;
49+
for (int i = 0; i < size(cnt); ++i) {
50+
if (!cnt[i]) {
51+
continue;
52+
}
53+
for (int j = total; j >= 0; --j) {
54+
for (int k = even; k >= 0; --k) {
55+
if (!dp[j][k]) {
56+
continue;
57+
}
58+
for (int c = 1; c <= cnt[i]; ++c) {
59+
if (j + c * i <= total && k + c <= even) {
60+
dp[j + c * i][k + c] = (dp[j + c * i][k + c] + ((static_cast<int64_t>(dp[j][k]) * nCr(cnt[i], c)) % MOD)) % MOD;
61+
}
62+
}
63+
}
64+
}
65+
}
66+
int result = (((static_cast<int64_t>(dp[total][even]) * factorial(even)) % MOD) * factorial(size(num) - even)) % MOD;
67+
for (const auto& x : cnt) {
68+
result = (static_cast<int64_t>(result) * inv_factorial(x)) % MOD;
69+
}
70+
return result;
71+
}
72+
};

0 commit comments

Comments
 (0)