|
| 1 | +// Time: O(n) |
| 2 | +// Space: O(1) |
| 3 | + |
| 4 | +// constructive algorithms, math |
| 5 | +class Solution { |
| 6 | +public: |
| 7 | + int minCostToEqualizeArray(vector<int>& nums, int cost1, int cost2) { |
| 8 | + static const int MOD = 1e9 + 7; |
| 9 | + |
| 10 | + const int n = size(nums); |
| 11 | + const int64_t mx = ranges::max(nums); |
| 12 | + int64_t total = mx * n - accumulate(cbegin(nums), cend(nums), 0ll); |
| 13 | + // fill until mx with only cost1 operations |
| 14 | + if (n <= 2 || 2 * cost1 <= cost2) { |
| 15 | + return total * cost1 % MOD; |
| 16 | + } |
| 17 | + |
| 18 | + int64_t result = numeric_limits<int64_t>::max(); |
| 19 | + // fill until mx with more cost2 operations and fewer cost1 operations |
| 20 | + const int64_t mn = ranges::min(nums); |
| 21 | + int64_t cnt1 = max((mx - mn) - (total - (mx - mn)), static_cast<int64_t>(0)); |
| 22 | + int64_t cnt2 = total - cnt1; |
| 23 | + result = min(result, (cnt1 + cnt2 % 2) * cost1 + cnt2 / 2 * cost2); |
| 24 | + |
| 25 | + // fill until mx+x with most cost2 operations and fewest cost1 operations, |
| 26 | + // where x is the max of x s.t. cnt1+x >= (n-1)*x => cnt1 >= (n-2)*x |
| 27 | + const int64_t x = cnt1 / (n - 2); |
| 28 | + cnt1 %= n - 2; |
| 29 | + total += n * x; |
| 30 | + cnt2 = total - cnt1; |
| 31 | + result = min(result, (cnt1 + cnt2 % 2) * cost1 + (cnt2 / 2) * cost2); |
| 32 | + |
| 33 | + // fill until mx+x+1 or mx+x+2 with nearly all cost2 operations and at most one cost1 operation |
| 34 | + for (int _ = 0; _ < 2; ++_) { // increase twice is for odd n |
| 35 | + total += n; |
| 36 | + result = min(result, total % 2 * cost1 + total / 2 * cost2); |
| 37 | + } |
| 38 | + return result % MOD; |
| 39 | + } |
| 40 | +}; |
0 commit comments