|
| 1 | +// Time: O(n * rlogn) |
| 2 | +// Space: O(n) |
| 3 | + |
| 4 | +// dijkstra's algorithm |
| 5 | +class Solution { |
| 6 | +public: |
| 7 | + vector<long long> minCost(int n, vector<vector<int>>& roads, vector<int>& appleCost, int k) { |
| 8 | + static const int INF = numeric_limits<int>::max(); |
| 9 | + |
| 10 | + vector<vector<pair<int, int>>> adj(n); |
| 11 | + for (const auto& r : roads) { |
| 12 | + adj[r[0] - 1].emplace_back(r[1] - 1, r[2]); |
| 13 | + adj[r[1] - 1].emplace_back(r[0] - 1, r[2]); |
| 14 | + } |
| 15 | + const auto& dijkstra = [&](int start) { |
| 16 | + vector<long long> best(size(adj), INF); |
| 17 | + best[start] = 0; |
| 18 | + priority_queue<pair<long long, int>, vector<pair<long long, int>>, greater<pair<long long, int>>> min_heap; |
| 19 | + min_heap.emplace(0, start); |
| 20 | + while (!empty(min_heap)) { |
| 21 | + const auto [curr, u] = min_heap.top(); min_heap.pop(); |
| 22 | + if (best[u] < curr) { |
| 23 | + continue; |
| 24 | + } |
| 25 | + for (const auto& [v, w] : adj[u]) { |
| 26 | + if (best[v] - curr <= w) { |
| 27 | + continue; |
| 28 | + } |
| 29 | + best[v] = curr + w; |
| 30 | + min_heap.emplace(curr + w, v); |
| 31 | + } |
| 32 | + } |
| 33 | + return best; |
| 34 | + }; |
| 35 | + |
| 36 | + vector<long long> result(n, INF); |
| 37 | + for (int u = 0; u < n; ++u) { |
| 38 | + const auto& best = dijkstra(u); |
| 39 | + for (int v = 0; v < n; ++v) { |
| 40 | + result[u] = min(result[u], appleCost[v] + (k + 1) * best[v]); |
| 41 | + } |
| 42 | + } |
| 43 | + return result; |
| 44 | + } |
| 45 | +}; |
0 commit comments