|
| 1 | +// Time: O(n * m) |
| 2 | +// Space: O(n + m) |
| 3 | + |
| 4 | +// manacher's algorithm, dp |
| 5 | +class Solution { |
| 6 | +public: |
| 7 | + int longestPalindrome(string s, string t) { |
| 8 | + const auto& manacher = [](const string& s) { |
| 9 | + const auto& preProcess = [](const string& s) { |
| 10 | + if (empty(s)) { |
| 11 | + return string("^$"); |
| 12 | + } |
| 13 | + string ret = "^"; |
| 14 | + for (int i = 0; i < size(s); ++i) { |
| 15 | + ret += "#" + s.substr(i, 1); |
| 16 | + } |
| 17 | + ret += "#$"; |
| 18 | + return ret; |
| 19 | + }; |
| 20 | + |
| 21 | + string T = preProcess(s); |
| 22 | + const int n = size(T); |
| 23 | + vector<int> P(n); |
| 24 | + int C = 0, R = 0; |
| 25 | + for (int i = 1; i < n - 1; ++i) { |
| 26 | + int i_mirror = 2 * C - i; |
| 27 | + P[i] = (R > i) ? min(R - i, P[i_mirror]) : 0; |
| 28 | + while (T[i + 1 + P[i]] == T[i - 1 - P[i]]) { |
| 29 | + ++P[i]; |
| 30 | + } |
| 31 | + if (i + P[i] > R) { |
| 32 | + C = i; |
| 33 | + R = i + P[i]; |
| 34 | + } |
| 35 | + } |
| 36 | + return P; |
| 37 | + }; |
| 38 | + |
| 39 | + const auto& longest_palindrome = [&](const auto &s) { |
| 40 | + vector<int> result(size(s) + 1); |
| 41 | + const auto& P = manacher(s); |
| 42 | + for (int i = 1; i + 1 < size(P); ++i) { |
| 43 | + result[(i - P[i]) / 2] = P[i]; |
| 44 | + } |
| 45 | + return result; |
| 46 | + }; |
| 47 | + |
| 48 | + reverse(begin(t), end(t)); |
| 49 | + const auto& p1 = longest_palindrome(s); |
| 50 | + const auto& p2 = longest_palindrome(t); |
| 51 | + int result = 0; |
| 52 | + vector<vector<int>> dp(size(s) + 1, vector<int>(size(t) + 1)); |
| 53 | + for (int i = 0; i < size(s); ++i) { |
| 54 | + for (int j = 0; j < size(t); ++j) { |
| 55 | + dp[i + 1][j + 1] = s[i] == t[j] ? dp[i][j] + 2 : 0; |
| 56 | + result = max(result, dp[i + 1][j + 1] + max(p1[i + (s[i] == t[j] ? 1 : 0)] , p2[j + (s[i] == t[j] ? 1 : 0)])); |
| 57 | + } |
| 58 | + } |
| 59 | + return result; |
| 60 | + } |
| 61 | +}; |
0 commit comments