|
| 1 | +// Time: O(k*r*c + |E|log|V|) = O(k*r*c + (k*|V|)*log|V|) |
| 2 | +// = O(k*r*c + (k*(k*2^k))*log(k*2^k)) |
| 3 | +// = O(k*r*c + (k*(k*2^k))*(logk + k*log2)) |
| 4 | +// = O(k*r*c + (k*(k*2^k))*k) |
| 5 | +// = O(k*r*c + k^3*2^k) |
| 6 | +// Space: O(|V|) = O(k*2^k) |
| 7 | + |
| 8 | +class Solution { |
| 9 | +public: |
| 10 | + int shortestPathAllKeys(vector<string>& grid) { |
| 11 | + unordered_map<char, pair<int, int>> locations; |
| 12 | + for (int r = 0; r < grid.size(); ++r) { |
| 13 | + for (int c = 0; c < grid[0].size(); ++c) { |
| 14 | + if (string(".#").find(grid[r][c]) == string::npos) { |
| 15 | + locations[grid[r][c]] = make_pair(r, c); |
| 16 | + } |
| 17 | + } |
| 18 | + } |
| 19 | + unordered_map<char, unordered_map<char, int>> dists; |
| 20 | + for (const auto& kvp : locations) { |
| 21 | + dists[kvp.first] = bfs(grid, kvp.first, locations); |
| 22 | + } |
| 23 | + |
| 24 | + // Dijkstra's algorithm |
| 25 | + using T = tuple<int, char, int>; |
| 26 | + priority_queue<T, vector<T>, greater<T>> min_heap; |
| 27 | + min_heap.emplace(0, '@', 0); |
| 28 | + unordered_map<char, unordered_map<int, int>> best; |
| 29 | + best['@'][0] = 0; |
| 30 | + int count = 0; |
| 31 | + for (const auto& kvp : locations) { |
| 32 | + if (islower(kvp.first)) { |
| 33 | + ++count; |
| 34 | + } |
| 35 | + } |
| 36 | + uint32_t target_state = (1 << count) - 1; |
| 37 | + while (!min_heap.empty()) { |
| 38 | + int cur_d, state; |
| 39 | + char place; |
| 40 | + tie(cur_d, place, state) = min_heap.top(); min_heap.pop(); |
| 41 | + if (best.count(place) && |
| 42 | + best[place].count(state) && |
| 43 | + best[place][state] < cur_d) { |
| 44 | + continue; |
| 45 | + } |
| 46 | + if (state == target_state) { |
| 47 | + return cur_d; |
| 48 | + } |
| 49 | + for (const auto& kvp : dists[place]) { |
| 50 | + int dest, d; |
| 51 | + tie(dest, d) = kvp; |
| 52 | + auto next_state = state; |
| 53 | + if (islower(dest)) { |
| 54 | + next_state |= (1 << (dest - 'a')); |
| 55 | + } else if (isupper(dest)) { |
| 56 | + if (!(state & (1 << (dest - 'A')))) { |
| 57 | + continue; |
| 58 | + } |
| 59 | + } |
| 60 | + if (!best.count(dest) || |
| 61 | + !best[dest].count(next_state) || |
| 62 | + cur_d + d < best[dest][next_state]) { |
| 63 | + best[dest][next_state] = cur_d + d; |
| 64 | + min_heap.emplace(cur_d + d, dest, next_state); |
| 65 | + } |
| 66 | + } |
| 67 | + } |
| 68 | + return -1; |
| 69 | + } |
| 70 | + |
| 71 | +private: |
| 72 | + unordered_map<char, int> bfs(const vector<string>&grid, |
| 73 | + char source, |
| 74 | + const unordered_map<char, pair<int, int>>& locations) { |
| 75 | + static const vector<pair<int, int>> directions{{0, -1}, {0, 1}, |
| 76 | + {-1, 0}, {1, 0}}; |
| 77 | + int r, c; |
| 78 | + tie(r, c) = locations.at(source); |
| 79 | + vector<vector<bool>> lookup(grid.size(), vector<bool>(grid[0].size())); |
| 80 | + lookup[r][c] = true; |
| 81 | + queue<tuple<int, int, int>> q; |
| 82 | + q.emplace(r, c, 0); |
| 83 | + unordered_map<char, int> dist; |
| 84 | + while (!q.empty()) { |
| 85 | + int r, c, d; |
| 86 | + tie(r, c, d) = q.front(); q.pop(); |
| 87 | + if (source != grid[r][c] && grid[r][c] != '.') { |
| 88 | + dist[grid[r][c]] = d; |
| 89 | + continue; |
| 90 | + } |
| 91 | + for (const auto& dir : directions) { |
| 92 | + int cr = r + dir.first, cc = c + dir.second; |
| 93 | + if (!((0 <= cr && cr < grid.size()) && |
| 94 | + (0 <= cc && cc < grid[0].size()))) { |
| 95 | + continue; |
| 96 | + } |
| 97 | + if (grid[cr][cc] != '#' && !lookup[cr][cc]) { |
| 98 | + lookup[cr][cc] = true; |
| 99 | + q.emplace(cr, cc, d + 1); |
| 100 | + } |
| 101 | + } |
| 102 | + } |
| 103 | + return dist ; |
| 104 | + } |
| 105 | +}; |
0 commit comments