|
| 1 | +import numpy as np |
| 2 | +import pickle |
| 3 | +from datetime import datetime |
| 4 | +import os |
| 5 | + |
| 6 | +# Change the current working directory to the location of 'Combined Trajectory_Label_Geolife' folder. |
| 7 | +os.chdir(r'/home/ubuntu/Transport-Mode-GPS-CNN/data/Combined_Trajectory_Label_Geolife') |
| 8 | + |
| 9 | +# create 'daysDate' function to convert start and end time to a number of days |
| 10 | + |
| 11 | + |
| 12 | +def days_date(time_str): |
| 13 | + date_format = "%Y/%m/%d %H:%M:%S" |
| 14 | + current = datetime.strptime(time_str, date_format) |
| 15 | + date_format = "%Y/%m/%d" |
| 16 | + bench = datetime.strptime('1899/12/30', date_format) |
| 17 | + no_days = current - bench |
| 18 | + delta_time_days = no_days.days + current.hour / 24.0 + current.minute / (24. * 60.) + current.second / (24. * 3600.) |
| 19 | + return delta_time_days |
| 20 | + |
| 21 | +# Change Mode Name to Mode index |
| 22 | +Mode_Index = {"walk": 0, "run": 9, "bike": 1, "bus": 2, "car": 3, "taxi": 3, "subway": 4, "railway": 4, |
| 23 | + "train": 4, "motocycle": 8, "boat": 9, "airplane": 9, "other": 9} |
| 24 | + |
| 25 | +## 0: walk |
| 26 | +## 1: bike |
| 27 | +## 2: bus |
| 28 | +## 3: car, taxi |
| 29 | +## 4: subway, railway, train |
| 30 | +## 8: motocycle |
| 31 | +## 9: run, boat, airplane, other |
| 32 | + |
| 33 | +# Ground modes are the modes that we use in this paper. |
| 34 | +Ground_Mode = ['walk', 'bike', 'bus', 'car', 'taxi', 'subway', 'railway', 'train'] |
| 35 | +## Ground_Mode = [0, 1, 2, 3, 3, 4, 4, 4] |
| 36 | + |
| 37 | +# Trajectory_Array and Label_Array are the final lists which each of its element is for one user |
| 38 | +Trajectory_Array = [] |
| 39 | +Label_Array = [] |
| 40 | +Trajectory_Label_Array = [] |
| 41 | +UserNon = range(190) ## 0-179, might not be enough |
| 42 | + |
| 43 | +# 1 |
| 44 | +for k in UserNon: |
| 45 | +## will be the same |
| 46 | +#for k in range(len(UserNon)): |
| 47 | + |
| 48 | + InputFile = "combined" + str(k) + ".plt" |
| 49 | + ##InputFile = "combined" + str(UserNon[k]) + ".plt" |
| 50 | + table = [] |
| 51 | + try: |
| 52 | + ## with open(InputFile, 'r') as inp: |
| 53 | + with open(InputFile, 'rb') as inp: |
| 54 | + for row in inp: |
| 55 | + row = row.rstrip() |
| 56 | + row = row.decode("utf-8") |
| 57 | + row = row.split(',') |
| 58 | + if len(row) == 7: |
| 59 | + table.append(row) |
| 60 | + except IOError: |
| 61 | + continue |
| 62 | + #print(table) |
| 63 | + |
| 64 | +# TrajectoryMatrix = contains lat, long, date in each column |
| 65 | + table_array = np.array(table, dtype=object) |
| 66 | + #print (table_array.shape) |
| 67 | + # for 2d array, axis = -1 is equal to axis = 1 |
| 68 | + TrajectoryMatrix = np.stack((table_array[:, 0], table_array[:, 1], table_array[:, 4]), axis=-1) |
| 69 | + #print( TrajectoryMatrix.shape) |
| 70 | + for i in range(len(table_array[:, 0])): |
| 71 | + for j in range(3): |
| 72 | + TrajectoryMatrix[i, j] = float(TrajectoryMatrix[i, j]) |
| 73 | + |
| 74 | + Trajectory_Array.append(TrajectoryMatrix) |
| 75 | + |
| 76 | + |
| 77 | +# end1 |
| 78 | +# 2.Modify the labels file and create array with start_time, end_time in days and labels |
| 79 | + InputFile = "labels" + str(k) + ".txt" |
| 80 | + table = [] |
| 81 | + with open(InputFile, 'rb') as inp: |
| 82 | + for row in inp: |
| 83 | + row = row.rstrip() |
| 84 | + row = row.decode("utf-8") |
| 85 | + row = row.split('\t') |
| 86 | + if len(row) == 3: |
| 87 | + table.append(row) |
| 88 | + |
| 89 | + LabelFile = np.array(table, dtype=object) |
| 90 | + |
| 91 | + |
| 92 | +# StartTime and EndTime in days after 1899/12/30 for each data point in labels.cv |
| 93 | +# Modify label for those rows that don't have any time and labels |
| 94 | +# LabelMatrix = the array that has Start time(days), End time(days), and labels |
| 95 | + |
| 96 | + StartTime = [] |
| 97 | + EndTime = [] |
| 98 | + label = [] |
| 99 | + Error = [] |
| 100 | + |
| 101 | + for i in range(len(LabelFile[:, 0])): |
| 102 | + try: |
| 103 | + if LabelFile[i, 2] in Ground_Mode: |
| 104 | + StartTime.append(days_date(LabelFile[i, 0])) |
| 105 | + EndTime.append(days_date(LabelFile[i, 1])) |
| 106 | + label.append(Mode_Index[LabelFile[i, 2]]) |
| 107 | + except ValueError: |
| 108 | + Error.append(i) |
| 109 | + |
| 110 | + LabelMatrix = (np.vstack((StartTime, EndTime, label))).T |
| 111 | + Label_Array.append(LabelMatrix) |
| 112 | + |
| 113 | + # End2 |
| 114 | + |
| 115 | + |
| 116 | + |
| 117 | + # 3.Assign the labels to the trajectories |
| 118 | + # Trajectory = zip(lat, long, date) |
| 119 | + Dates = np.split(TrajectoryMatrix, 3, axis=-1)[2] |
| 120 | + Sec = 1 / (24.0 * 3600.0) |
| 121 | + # C_list: all the rows in the TrajectoryMatrix that should be picked up |
| 122 | + C_list = [] |
| 123 | + # Mode_Trajectory: all labels |
| 124 | + Mode_Trajectory = [] |
| 125 | + for index, row in enumerate(LabelMatrix): |
| 126 | + A = np.where(Dates >= (float(row[0]) - Sec)) |
| 127 | + B = np.where(Dates <= (float(row[1]) + Sec)) |
| 128 | + C = list(set(A[0]).intersection(B[0])) |
| 129 | + if len(C) == 0: |
| 130 | + print("error") |
| 131 | + [Mode_Trajectory.append(row[2]) for i in C] |
| 132 | + [C_list.append(i) for i in C] |
| 133 | + |
| 134 | + TrajectoryMatrix = [TrajectoryMatrix[i, :] for i in C_list] |
| 135 | + TrajectoryMatrix = np.array(TrajectoryMatrix) |
| 136 | + Mode_Trajectory = np.array(Mode_Trajectory) |
| 137 | + Trajectory_Label = (np.vstack((TrajectoryMatrix.T, Mode_Trajectory))).T |
| 138 | + |
| 139 | + Trajectory_Label_Array.append(Trajectory_Label) |
| 140 | + |
| 141 | + # End3 |
| 142 | + |
| 143 | +##for i in Trajectory_Label_Array: |
| 144 | +## Shape = np.shape(i) |
| 145 | +## print(Shape, "+++") |
| 146 | + |
| 147 | +# Save Trajectory_Array and Label_Array for all users |
| 148 | +with open("/home/ubuntu/Transport-Mode-GPS-CNN/data/1_Trajectory_Label_Array.pickle", 'wb') as f: # Python 3: open(..., 'wb') |
| 149 | + pickle.dump(Trajectory_Label_Array, f) |
0 commit comments