-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
142 lines (113 loc) · 4.37 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import torch
from torchvision import datasets, models, transforms
import torch.nn as nn
from torch.nn import functional as F
import torch.optim as optim
from torch.optim import lr_scheduler
import torchvision
import argparse
import time
def train_model(model, criterion, optimizer, num_epochs=3):
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch+1, num_epochs))
print('-' * 10)
for phase in ['train', 'val']:
if phase == 'train':
model.train()
else:
model.eval()
running_loss = 0.0
running_corrects = 0
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
if phase == 'train':
optimizer.zero_grad()
loss.backward()
optimizer.step()
_, preds = torch.max(outputs, 1)
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / len(image_datasets[phase])
epoch_acc = running_corrects.double() / len(image_datasets[phase])
if phase == "train": torch.save(model.state_dict(), args.output + '/model_'+str(epoch+1)+'.pth')
print('{} loss: {:.4f}, acc: {:.4f}'.format(phase,
epoch_loss,
epoch_acc))
return model
if __name__ == "__main__":
ap = argparse.ArgumentParser()
ap.add_argument('--train', required=True,
help='path to folder train')
ap.add_argument('--valid', required=False,
help='path to folder valid')
ap.add_argument('-o','--output', required=True,
help='path to save model trained')
args = ap.parse_args()
train_path = args.train
valid_path = args.valid if args.valid else train_path
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
data_transforms = {
'train':
transforms.Compose([
transforms.Resize((224,224)),
# transforms.RandomGrayscale(p=0.1),
# transforms.RandomAffine(0, shear=5, scale=(0.8,1.2)),
# transforms.ColorJitter(brightness=(0.5, 1.5), contrast=(0.8, 1.5), saturation=0),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.RandomRotation((30,70)),
transforms.ToTensor(),
normalize
]),
'val':
transforms.Compose([
transforms.Resize((224,224)),
transforms.ToTensor(),
normalize
]),
}
image_datasets = {
'train':
datasets.ImageFolder(train_path, data_transforms['train']),
'val':
datasets.ImageFolder(valid_path, data_transforms['val'])
}
dataloaders = {
'train':
torch.utils.data.DataLoader(image_datasets['train'],
batch_size=4,
shuffle=True,
num_workers=0),
'val':
torch.utils.data.DataLoader(image_datasets['val'],
batch_size=4,
shuffle=False,
num_workers=0)
}
class_names = image_datasets['train'].classes
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
print(class_names)
print(dataset_sizes)
inputs, classes = next(iter(dataloaders['train']))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_ft = models.resnet50(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, len(class_names))
model_ft = model_ft.to(device)
model_ft.cuda()
model_ft.eval()
criterion = nn.CrossEntropyLoss()
# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochsScratch
# Final Thoughts and Where to Go Next
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
model_trained = train_model(model_ft, criterion, optimizer_ft, num_epochs=3)
torch.save(model_trained.state_dict(), args.output + '/model_'+str(time.time() % 1000)+'.pth')