-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathlayers.py
340 lines (289 loc) · 13.3 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# build region query for llava
import re
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmdet.models import BaseRoIExtractor
from mmcv.cnn import ConvModule, Linear, normal_init
def str2reg(input_str):
bbox_regex = r'<bbox>\s*(\d+)\s*(\d+)\s*(\d+)\s*(\d+)\s*</bbox>'
# only attention inter the instruction
results = []
matches = re.findall(bbox_regex, input_str)
for match in matches:
results.append([float(match[0]), float(match[1]), float(match[2]),
float(match[3])])
return results
class MLP(nn.Module):
def __init__(self, input_dim: int, hidden_dim: int, output_dim: int,
num_layers: int) -> None:
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(
Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
def forward(self, x):
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
def coordinate_to_encoding(coord_tensor,
num_feats: int = 128,
temperature: int = 10000,
scale: float = 2 * math.pi):
dim_t = torch.arange(
num_feats, dtype=torch.float32, device=coord_tensor.device)
dim_t = temperature ** (2 * (dim_t // 2) / num_feats)
x_embed = coord_tensor[..., 0] * scale
y_embed = coord_tensor[..., 1] * scale
pos_x = x_embed[..., None] / dim_t
pos_y = y_embed[..., None] / dim_t
pos_x = torch.stack((pos_x[..., 0::2].sin(), pos_x[..., 1::2].cos()),
dim=-1).flatten(2)
pos_y = torch.stack((pos_y[..., 0::2].sin(), pos_y[..., 1::2].cos()),
dim=-1).flatten(2)
if coord_tensor.size(-1) == 2:
pos = torch.cat((pos_y, pos_x), dim=-1)
elif coord_tensor.size(-1) == 4:
w_embed = coord_tensor[..., 2] * scale
pos_w = w_embed[..., None] / dim_t
pos_w = torch.stack((pos_w[..., 0::2].sin(), pos_w[..., 1::2].cos()),
dim=-1).flatten(2)
h_embed = coord_tensor[..., 3] * scale
pos_h = h_embed[..., None] / dim_t
pos_h = torch.stack((pos_h[..., 0::2].sin(), pos_h[..., 1::2].cos()),
dim=-1).flatten(2)
pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=-1)
else:
raise ValueError('Unknown pos_tensor shape(-1):{}'.format(
coord_tensor.size(-1)))
return pos
def align_tensor(inputs, max_len=None):
if max_len is None:
max_len = max([len(item) for item in inputs])
return torch.stack([padding_to(item, max_len) for item in inputs])
def padding_to(inputs, max=300):
if max is None:
return inputs
num_padding = max - len(inputs)
if inputs.dim() > 1:
padding = inputs.new_zeros(num_padding,
*inputs.size()[1:],
dtype=inputs.dtype)
else:
padding = inputs.new_zeros(num_padding, dtype=inputs.dtype)
inputs = torch.cat([inputs, padding], dim=0)
return inputs
class MLVLFuseModule(nn.Module):
def __init__(self, input_dims=1024, embed_dims=1024, num_levels=3, num_fuse=4):
super(MLVLFuseModule, self).__init__()
self.embed_dims = embed_dims
self.num_levels = num_levels
self.num_fuse = num_fuse
self.input_dims = input_dims
self.shuffle_channles = embed_dims // 4
# contains the tuple of level indices that will do the interaction
self.fuse_lvl_list = []
num_levels = self.num_levels
for lvl in range(num_levels):
top_lvl = min(lvl + 1, num_levels - 1)
dow_lvl = max(lvl - 1, 0)
tar_lvl = lvl
self.fuse_lvl_list.append((tar_lvl, top_lvl, dow_lvl))
self.remain_chs = self.embed_dims - self.shuffle_channles * 2
self._init_layers()
def generate_coordinate(self, featmap_sizes, device='cuda'):
x_range = torch.linspace(-1, 1, featmap_sizes[-1], device=device)
y_range = torch.linspace(-1, 1, featmap_sizes[-2], device=device)
y, x = torch.meshgrid(y_range, x_range)
y = y.expand([featmap_sizes[0], 1, -1, -1])
x = x.expand([featmap_sizes[0], 1, -1, -1])
coord_feat = torch.cat([x, y], 1)
return coord_feat
def _init_layers(self):
self.input_conv = nn.ModuleList([nn.Conv2d(self.input_dims + 2,
self.embed_dims, 1)
for _ in range(self.num_levels)])
self.fuse_convs = nn.ModuleList()
for i in range(self.num_fuse):
self.fuse_convs.append(
ConvModule(self.embed_dims,
self.embed_dims,
3,
stride=1,
padding=3 // 2,
conv_cfg=None,
norm_cfg=dict(type='GN',
num_groups=64,
requires_grad=True)
))
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
normal_init(m, std=0.01)
def _single_shuffle(self, inputs, conv_module):
if not isinstance(conv_module, (nn.ModuleList, list)):
conv_module = [conv_module]
for single_conv_m in conv_module:
fused_inputs = []
for fuse_lvl_tuple in self.fuse_lvl_list:
tar_lvl, top_lvl, dow_lvl = fuse_lvl_tuple
tar_input = inputs[tar_lvl]
top_input = inputs[top_lvl]
down_input = inputs[dow_lvl]
remain = tar_input[:, :self.remain_chs]
from_top = top_input[:,
self.remain_chs:][:,
self.shuffle_channles:]
from_top = F.interpolate(from_top.to(torch.float32),
size=tar_input.shape[-2:],
mode='bilinear',
align_corners=True)
from_down = down_input[:, self.remain_chs:][:, :self.
shuffle_channles]
from_down = F.interpolate(from_down.to(torch.float32),
size=tar_input.shape[-2:],
mode='bilinear',
align_corners=True)
fused_inputs.append(
torch.cat([remain, from_top.to(remain.dtype), from_down.to(remain.dtype)], dim=1))
fused_inputs = [single_conv_m(item) for item in fused_inputs]
inputs = fused_inputs
return inputs
def forward(self, inputs, ):
feat_size = [item.shape for item in inputs]
new_inputs = []
for feat, single_feat_size in zip(inputs, feat_size):
coord_feat = self.generate_coordinate(single_feat_size, device=inputs[0].device)
# feat = torch.cat([feat, coord_feat], dim=1)
feat = torch.cat([feat, coord_feat.to(feat.dtype)], dim=1)
new_inputs.append(feat)
inputs = new_inputs
inputs = [self.input_conv[lvl](item) for lvl, item in enumerate(inputs)]
for conv_m in self.fuse_convs:
inputs = self._single_shuffle(inputs, [conv_m])
return inputs
class MLVLROIQueryModule(nn.Module):
def __init__(self, embed_dims=1024, out_dims=4096,
num_levels=3):
super(MLVLROIQueryModule, self).__init__()
self.mlvl_fuse = MLVLFuseModule(input_dims=embed_dims,
embed_dims=embed_dims,
num_levels=num_levels,
num_fuse=5)
strids = [14 / 8, 14 / 4, 14 / 2, 14]
assert len(strids) == num_levels
bbox_roi_extractor = dict(roi_layer=dict(type='RoIAlign',
output_size=14,
sampling_ratio=2),
out_channels=embed_dims,
embed_dims=embed_dims,
fuse_level=num_levels,
featmap_strides=strids)
self.roi_align = MlvlRoIExtractor(**bbox_roi_extractor)
def forward(self, mlvl_feats, bboxes):
if mlvl_feats[0].dim() == 3:
h = w = int(math.sqrt(mlvl_feats[0].shape[1]))
assert h == 24
assert w == 24
b, c = mlvl_feats[0].shape[0], mlvl_feats[0].shape[-1]
mlvl_feats = [item.reshape(b, h, w, c).permute(0, 3, 1, 2) for item in mlvl_feats]
base_shape = mlvl_feats[0].shape[-2:]
num_level = len(mlvl_feats)
to_shape = [(base_shape[0] * 2 ** level, base_shape[1] * 2 ** level) for level in range(num_level)]
to_shape = to_shape[::-1]
for level in range(num_level):
feat = mlvl_feats[level]
shape = to_shape[level]
#feat = feat
#mlvl_feats[level] = F.interpolate(feat, size=shape, mode='bilinear', align_corners=True)
# todo: temporary fix for "upsample_bilinear2d_out_frame" not implemented for 'BFloat16'
feat = feat.to(torch.float32)
mlvl_feats[level] = F.interpolate(feat, size=shape, mode='bilinear', align_corners=True)
mlvl_feats[level] = mlvl_feats[level].to(torch.bfloat16)
mlvl_feats = self.mlvl_fuse(mlvl_feats)
return self.roi_align(mlvl_feats, bboxes)
class MlvlRoIExtractor(BaseRoIExtractor):
def __init__(self,
roi_layer,
out_channels,
featmap_strides,
embed_dims=1024,
stride=1,
norm_init=True,
fuse_level=3,
finest_scale=56,
init_cfg=None):
super(MlvlRoIExtractor, self).__init__(roi_layer, out_channels,
featmap_strides, init_cfg)
self.embed_dims = embed_dims
self.finest_scale = finest_scale
self.fuse_level = fuse_level
self.norm_init = norm_init
self.pconvs = nn.ModuleList(
nn.Conv2d(self.embed_dims, self.embed_dims, 3, stride=1, padding=1)
for _ in range(self.fuse_level))
self.pos_embedd = nn.Sequential(
nn.Linear(4, 256),
nn.ReLU(inplace=True),
nn.LayerNorm(256),
nn.Linear(256, 1024),
nn.ReLU(inplace=True),
nn.LayerNorm(1024),
)
self.updims = nn.Linear(1024, 4096)
self.flatten_linear = nn.Linear(self.embed_dims * self.roi_layers[0].output_size[0] ** 2, 1024)
self.norm_init_weights()
# self.dtype = torch.float32
def norm_init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
normal_init(m, 0, 0.01)
def forward(self, feats, rois, roi_scale_factor=None):
"""Forward function."""
num_imgs = len(rois)
# feats = [item for item in feats]
batch_rois = torch.cat(rois, dim=0).to(feats[0].dtype)
pos_embedd = self.pos_embedd(batch_rois)
out_size = self.roi_layers[0].output_size
num_levels = len(feats)
if feats[0].dim() == 3:
h = w = int(math.sqrt(feats[0].shape[1]))
assert h == 16
assert w == 16
b, c = feats[0].shape[0], feats[0].shape[-1]
feats = [item.reshape(b, h, w, c).permute(0, 3, 1, 2) for item in feats]
new_rois = []
for img_id, single_img_roi in enumerate(rois):
# rescale to original img scale
single_img_roi = single_img_roi * 224
roi_img_id = single_img_roi.new_ones(len(single_img_roi)) * img_id
single_img_roi = torch.cat([roi_img_id[:, None], single_img_roi], dim=1)
new_rois.append(single_img_roi)
rois = torch.cat(new_rois)
roi_feats = feats[0].new_zeros(self.fuse_level,
rois.size(0), self.out_channels, *out_size)
for i in range(num_levels):
if len(rois) > 0:
rois_ = rois
ori_dtype = feats[i].dtype
roi_feats_t = self.roi_layers[i](feats[i].to(torch.float32), rois_.to(torch.float32))
roi_feats[i] = roi_feats_t.to(ori_dtype)
else:
roi_feats += sum(
x.view(-1)[0]
for x in self.parameters()) * 0. + feats[i].sum() * 0.
fuse_roi_feats = []
for i in range(self.fuse_level):
fuse_roi_feats.append(self.pconvs[i](roi_feats[i]))
fuse_roi_feats = sum(fuse_roi_feats)
fuse_roi_feats = F.relu(fuse_roi_feats)
fuse_roi_feats = fuse_roi_feats.flatten(1, -1)
fuse_roi_feats = self.flatten_linear(fuse_roi_feats)
fuse_roi_feats = fuse_roi_feats + pos_embedd
fuse_roi_feats = self.updims(fuse_roi_feats)
query_feats = []
for i in range(num_imgs):
mask = rois[:, 0] == i
query_feats.append(fuse_roi_feats[mask])
return query_feats