Skip to content

Commit 65de748

Browse files
committed
Atualizando notebook queimadas
1 parent 04a5959 commit 65de748

5 files changed

+94646
-54
lines changed

requirements.txt

+1
Original file line numberDiff line numberDiff line change
@@ -6,3 +6,4 @@ pandas
66
ipympl
77
jupyterlab
88
jupytext
9+
ipyleaflet

tutorial/notebooks/05-Exemplo_Queimadas.md

+74-52
Original file line numberDiff line numberDiff line change
@@ -1,91 +1,110 @@
11
---
22
jupytext:
33
formats: md:myst
4-
text_representation:
5-
extension: .md
6-
format_name: myst
74
kernelspec:
85
display_name: Python 3 (ipykernel)
96
language: python
107
name: python3
8+
text_representation:
9+
extension: .md
10+
format_name: myst
11+
format_version: 0.13
12+
jupytext_version: 1.16.4
13+
kernelspec:
14+
display_name: Python 3 (ipykernel)
15+
language: python
16+
name: python3
1117
---
1218

13-
# Queimadas
14-
19+
# Análise de dados de queimadas no Brasil
1520

16-
Dados do INPE: http://queimadas.dgi.inpe.br/queimadas/bdqueimadas/
21+
Dados do INPE: https://terrabrasilis.dpi.inpe.br/queimadas/bdqueimadas/
1722

1823
Dados da NASA: https://firms.modaps.eosdis.nasa.gov/
1924

20-
```{code-cell}
25+
```{code-cell} ipython3
2126
!ls
2227
```
2328

24-
```{code-cell}
29+
```{code-cell} ipython3
2530
zipfile_inpe = "dados/Focos_BDQueimadas.zip"
2631
```
2732

28-
```{code-cell}
33+
```{code-cell} ipython3
2934
from zipfile import ZipFile
3035
```
3136

32-
```{code-cell}
37+
```{code-cell} ipython3
3338
with ZipFile(zipfile_inpe, 'r') as zip:
3439
zip.printdir()
3540
print(f'Extracting file {zipfile_inpe} now...')
3641
zip.extractall(path="dados")
3742
print('Done!')
3843
```
3944

40-
```{code-cell}
45+
```{code-cell} ipython3
4146
!ls dados
4247
```
4348

44-
```{code-cell}
49+
```{code-cell} ipython3
4550
import os
46-
csv_inpe = os.path.join("dados", "Focos_2020-07-01_2020-09-30.csv")
51+
csv_inpe = os.path.join("dados", "focos_qmd_inpe_2024-07-01_2024-09-01_12.910553.csv")
4752
```
4853

49-
```{code-cell}
54+
```{code-cell} ipython3
5055
with open(csv_inpe, 'r') as f:
5156
data = f.readlines()
5257
```
5358

54-
```{code-cell}
59+
```{code-cell} ipython3
5560
print(data[0:10])
5661
```
5762

58-
```{code-cell}
63+
## Pandas
64+
65+
```{code-cell} ipython3
5966
import pandas as pd
6067
```
6168

62-
```{code-cell}
69+
```{code-cell} ipython3
6370
with open(csv_inpe, 'r') as f:
6471
df = pd.read_csv(f)
6572
```
6673

67-
```{code-cell}
74+
```{code-cell} ipython3
6875
df
6976
```
7077

71-
```{code-cell}
72-
df = df[df['riscofogo']!=0.0]
78+
```{code-cell} ipython3
79+
pd.isnull(df['RiscoFogo'])
80+
```
81+
82+
```{code-cell} ipython3
83+
df = df[~pd.isnull(df['RiscoFogo'])]
7384
```
7485

75-
```{code-cell}
76-
df['satelite'].unique()
86+
```{code-cell} ipython3
87+
df = df[df['RiscoFogo']!=0]
7788
```
7889

79-
```{code-cell}
80-
df = df[df['satelite']=='TERRA_M-M']
90+
```{code-cell} ipython3
91+
df
8192
```
8293

83-
```{code-cell}
84-
del df['satelite']
85-
del df['pais']
94+
```{code-cell} ipython3
95+
df['Satelite'].unique()
8696
```
8797

88-
```{code-cell}
98+
```{code-cell} ipython3
99+
#df = df[df['satelite']=='TERRA_M-M']
100+
```
101+
102+
```{code-cell} ipython3
103+
del df['Satelite']
104+
del df['Pais']
105+
```
106+
107+
```{code-cell} ipython3
89108
df
90109
```
91110

@@ -95,7 +114,11 @@ Risco de Queima: http://queimadas.dgi.inpe.br/queimadas/portal/informacoes/pergu
95114

96115
Monografia: https://monografias.ufrn.br/jspui/bitstream/123456789/9704/1/tcc_dias_alexandre_henrique.pdf
97116

98-
```{code-cell}
117+
```{code-cell} ipython3
118+
# !pip install ipyleaflet
119+
```
120+
121+
```{code-cell} ipython3
99122
%matplotlib widget
100123
from ipyleaflet import Map, Marker, CircleMarker
101124
@@ -109,15 +132,15 @@ m = Map(center=center, zoom=3)
109132
display(m)
110133
```
111134

112-
```{code-cell}
113-
frp_notnull = df[df['frp'].notnull()]
114-
frp_notnull = frp_notnull.loc[frp_notnull['datahora'].str.contains('2020/09/30')]
135+
```{code-cell} ipython3
136+
frp_notnull = df[df['FRP'].notnull()]
137+
frp_notnull = frp_notnull.loc[frp_notnull['DataHora'].str.contains('2024/08/30')]
115138
```
116139

117-
```{code-cell}
140+
```{code-cell} ipython3
118141
for index, row in frp_notnull.iterrows():
119-
lat = row['latitude']
120-
lon = row['longitude']
142+
lat = row['Latitude']
143+
lon = row['Longitude']
121144
circle_marker = CircleMarker()
122145
circle_marker.location = (lat, lon)
123146
circle_marker.radius = 1
@@ -130,42 +153,42 @@ for index, row in frp_notnull.iterrows():
130153
- para uma mesma cidade, pegar o risco em função do tempo
131154
- para um grupo de cidades plotar o risco em um mesmo gráfico
132155

133-
```{code-cell}
134-
lista_municipios = df['municipio'].unique()
156+
```{code-cell} ipython3
157+
lista_municipios = df['Municipio'].unique()
135158
type(lista_municipios), len(lista_municipios)
136159
```
137160

138-
```{code-cell}
139-
corumba = df[df['municipio'] == "CORUMBA"]
140-
corumba
161+
```{code-cell} ipython3
162+
pv = df[df['Municipio'] == "PORTO VELHO"]
163+
pv
141164
```
142165

143-
```{code-cell}
144-
riscofogo = corumba['riscofogo']
145-
diasemchuva = corumba['diasemchuva']
166+
```{code-cell} ipython3
167+
riscofogo = pv['RiscoFogo']
168+
diasemchuva = pv['DiaSemChuva']
146169
```
147170

148-
```{code-cell}
171+
```{code-cell} ipython3
149172
import numpy as np
150-
corumba = corumba.replace(-999, np.nan)
173+
pv = pv.replace(-999, np.nan)
151174
```
152175

153-
```{code-cell}
154-
agrupado = corumba.groupby('datahora').mean()
176+
```{code-cell} ipython3
177+
agrupado = pv.groupby('DataHora').mean()
155178
```
156179

157-
```{code-cell}
180+
```{code-cell} ipython3
158181
agrupado
159182
```
160183

161-
```{code-cell}
184+
```{code-cell} ipython3
162185
datas = list(agrupado.index)
163186
datas = [item[0:10] for item in datas]
164187
datas
165188
len(datas)
166189
```
167190

168-
```{code-cell}
191+
```{code-cell} ipython3
169192
import matplotlib.pyplot as plt
170193
171194
fig, ax = plt.subplots(2, 1, figsize=(8, 6))
@@ -183,7 +206,7 @@ ax[1].set_xticklabels(datas[::10], rotation=30)
183206
fig.tight_layout()
184207
```
185208

186-
```{code-cell}
209+
```{code-cell} ipython3
187210
fig, ax = plt.subplots(figsize=(8, 4))
188211
189212
ax.plot(agrupado['riscofogo'], 'r')
@@ -207,4 +230,3 @@ fig.tight_layout()
207230
[Voltar ao notebook principal](00-Tutorial_Python_Sul_2024.md)
208231

209232
[Ir para o notebook SciPy](06-Tutorial_SciPy.md)
210-

tutorial/notebooks/0x-Exemplo_Masked_Arrays.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -72,11 +72,11 @@ Vamos explorar os dados deste arquivo para os primeiros 14 dias de registros. Pa
7272

7373
```{code-cell} ipython3
7474
# Vamos usar skip_header e usecols para ler apenas um pedaço do arquivo.
75-
dates = np.genfromtxt(filename, dtype=np.unicode_, delimiter=",",
75+
dates = np.genfromtxt(filename, dtype=np.str_, delimiter=",",
7676
max_rows=1, usecols=range(3, 17),
7777
encoding="utf-8-sig")
7878
79-
locations = np.genfromtxt(filename, dtype=np.unicode_, delimiter=",",
79+
locations = np.genfromtxt(filename, dtype=np.str_, delimiter=",",
8080
skip_header=7, usecols=(0, 1),
8181
encoding="utf-8-sig")
8282
-33.2 MB
Binary file not shown.

0 commit comments

Comments
 (0)