1
1
---
2
2
jupytext :
3
3
formats : md:myst
4
- text_representation :
5
- extension : .md
6
- format_name : myst
7
4
kernelspec :
8
5
display_name : Python 3 (ipykernel)
9
6
language : python
10
7
name : python3
8
+ text_representation :
9
+ extension : .md
10
+ format_name : myst
11
+ format_version : 0.13
12
+ jupytext_version : 1.16.4
13
+ kernelspec :
14
+ display_name : Python 3 (ipykernel)
15
+ language : python
16
+ name : python3
11
17
---
12
18
13
- # Queimadas
14
-
19
+ # Análise de dados de queimadas no Brasil
15
20
16
- Dados do INPE: http ://queimadas.dgi .inpe.br/queimadas/bdqueimadas/
21
+ Dados do INPE: https ://terrabrasilis.dpi .inpe.br/queimadas/bdqueimadas/
17
22
18
23
Dados da NASA: https://firms.modaps.eosdis.nasa.gov/
19
24
20
- ``` {code-cell}
25
+ ``` {code-cell} ipython3
21
26
!ls
22
27
```
23
28
24
- ``` {code-cell}
29
+ ``` {code-cell} ipython3
25
30
zipfile_inpe = "dados/Focos_BDQueimadas.zip"
26
31
```
27
32
28
- ``` {code-cell}
33
+ ``` {code-cell} ipython3
29
34
from zipfile import ZipFile
30
35
```
31
36
32
- ``` {code-cell}
37
+ ``` {code-cell} ipython3
33
38
with ZipFile(zipfile_inpe, 'r') as zip:
34
39
zip.printdir()
35
40
print(f'Extracting file {zipfile_inpe} now...')
36
41
zip.extractall(path="dados")
37
42
print('Done!')
38
43
```
39
44
40
- ``` {code-cell}
45
+ ``` {code-cell} ipython3
41
46
!ls dados
42
47
```
43
48
44
- ``` {code-cell}
49
+ ``` {code-cell} ipython3
45
50
import os
46
- csv_inpe = os.path.join("dados", "Focos_2020 -07-01_2020 -09-30 .csv")
51
+ csv_inpe = os.path.join("dados", "focos_qmd_inpe_2024 -07-01_2024 -09-01_12.910553 .csv")
47
52
```
48
53
49
- ``` {code-cell}
54
+ ``` {code-cell} ipython3
50
55
with open(csv_inpe, 'r') as f:
51
56
data = f.readlines()
52
57
```
53
58
54
- ``` {code-cell}
59
+ ``` {code-cell} ipython3
55
60
print(data[0:10])
56
61
```
57
62
58
- ``` {code-cell}
63
+ ## Pandas
64
+
65
+ ``` {code-cell} ipython3
59
66
import pandas as pd
60
67
```
61
68
62
- ``` {code-cell}
69
+ ``` {code-cell} ipython3
63
70
with open(csv_inpe, 'r') as f:
64
71
df = pd.read_csv(f)
65
72
```
66
73
67
- ``` {code-cell}
74
+ ``` {code-cell} ipython3
68
75
df
69
76
```
70
77
71
- ``` {code-cell}
72
- df = df[df['riscofogo']!=0.0]
78
+ ``` {code-cell} ipython3
79
+ pd.isnull(df['RiscoFogo'])
80
+ ```
81
+
82
+ ``` {code-cell} ipython3
83
+ df = df[~pd.isnull(df['RiscoFogo'])]
73
84
```
74
85
75
- ``` {code-cell}
76
- df['satelite'].unique()
86
+ ``` {code-cell} ipython3
87
+ df = df[df['RiscoFogo']!=0]
77
88
```
78
89
79
- ``` {code-cell}
80
- df = df[df['satelite']=='TERRA_M-M']
90
+ ``` {code-cell} ipython3
91
+ df
81
92
```
82
93
83
- ``` {code-cell}
84
- del df['satelite']
85
- del df['pais']
94
+ ``` {code-cell} ipython3
95
+ df['Satelite'].unique()
86
96
```
87
97
88
- ``` {code-cell}
98
+ ``` {code-cell} ipython3
99
+ #df = df[df['satelite']=='TERRA_M-M']
100
+ ```
101
+
102
+ ``` {code-cell} ipython3
103
+ del df['Satelite']
104
+ del df['Pais']
105
+ ```
106
+
107
+ ``` {code-cell} ipython3
89
108
df
90
109
```
91
110
@@ -95,7 +114,11 @@ Risco de Queima: http://queimadas.dgi.inpe.br/queimadas/portal/informacoes/pergu
95
114
96
115
Monografia: https://monografias.ufrn.br/jspui/bitstream/123456789/9704/1/tcc_dias_alexandre_henrique.pdf
97
116
98
- ``` {code-cell}
117
+ ``` {code-cell} ipython3
118
+ # !pip install ipyleaflet
119
+ ```
120
+
121
+ ``` {code-cell} ipython3
99
122
%matplotlib widget
100
123
from ipyleaflet import Map, Marker, CircleMarker
101
124
@@ -109,15 +132,15 @@ m = Map(center=center, zoom=3)
109
132
display(m)
110
133
```
111
134
112
- ``` {code-cell}
113
- frp_notnull = df[df['frp '].notnull()]
114
- frp_notnull = frp_notnull.loc[frp_notnull['datahora '].str.contains('2020/09 /30')]
135
+ ``` {code-cell} ipython3
136
+ frp_notnull = df[df['FRP '].notnull()]
137
+ frp_notnull = frp_notnull.loc[frp_notnull['DataHora '].str.contains('2024/08 /30')]
115
138
```
116
139
117
- ``` {code-cell}
140
+ ``` {code-cell} ipython3
118
141
for index, row in frp_notnull.iterrows():
119
- lat = row['latitude ']
120
- lon = row['longitude ']
142
+ lat = row['Latitude ']
143
+ lon = row['Longitude ']
121
144
circle_marker = CircleMarker()
122
145
circle_marker.location = (lat, lon)
123
146
circle_marker.radius = 1
@@ -130,42 +153,42 @@ for index, row in frp_notnull.iterrows():
130
153
- para uma mesma cidade, pegar o risco em função do tempo
131
154
- para um grupo de cidades plotar o risco em um mesmo gráfico
132
155
133
- ``` {code-cell}
134
- lista_municipios = df['municipio '].unique()
156
+ ``` {code-cell} ipython3
157
+ lista_municipios = df['Municipio '].unique()
135
158
type(lista_municipios), len(lista_municipios)
136
159
```
137
160
138
- ``` {code-cell}
139
- corumba = df[df['municipio '] == "CORUMBA "]
140
- corumba
161
+ ``` {code-cell} ipython3
162
+ pv = df[df['Municipio '] == "PORTO VELHO "]
163
+ pv
141
164
```
142
165
143
- ``` {code-cell}
144
- riscofogo = corumba['riscofogo ']
145
- diasemchuva = corumba['diasemchuva ']
166
+ ``` {code-cell} ipython3
167
+ riscofogo = pv['RiscoFogo ']
168
+ diasemchuva = pv['DiaSemChuva ']
146
169
```
147
170
148
- ``` {code-cell}
171
+ ``` {code-cell} ipython3
149
172
import numpy as np
150
- corumba = corumba .replace(-999, np.nan)
173
+ pv = pv .replace(-999, np.nan)
151
174
```
152
175
153
- ``` {code-cell}
154
- agrupado = corumba .groupby('datahora ').mean()
176
+ ``` {code-cell} ipython3
177
+ agrupado = pv .groupby('DataHora ').mean()
155
178
```
156
179
157
- ``` {code-cell}
180
+ ``` {code-cell} ipython3
158
181
agrupado
159
182
```
160
183
161
- ``` {code-cell}
184
+ ``` {code-cell} ipython3
162
185
datas = list(agrupado.index)
163
186
datas = [item[0:10] for item in datas]
164
187
datas
165
188
len(datas)
166
189
```
167
190
168
- ``` {code-cell}
191
+ ``` {code-cell} ipython3
169
192
import matplotlib.pyplot as plt
170
193
171
194
fig, ax = plt.subplots(2, 1, figsize=(8, 6))
@@ -183,7 +206,7 @@ ax[1].set_xticklabels(datas[::10], rotation=30)
183
206
fig.tight_layout()
184
207
```
185
208
186
- ``` {code-cell}
209
+ ``` {code-cell} ipython3
187
210
fig, ax = plt.subplots(figsize=(8, 4))
188
211
189
212
ax.plot(agrupado['riscofogo'], 'r')
@@ -207,4 +230,3 @@ fig.tight_layout()
207
230
[ Voltar ao notebook principal] ( 00-Tutorial_Python_Sul_2024.md )
208
231
209
232
[ Ir para o notebook SciPy] ( 06-Tutorial_SciPy.md )
210
-
0 commit comments