-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmpc.py
328 lines (254 loc) · 9.01 KB
/
mpc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# Class: mpc.py
# Created by: Michael Napoli
# Created on: 5/31/2022
import time
import math
class ModelPredictiveControl:
def __init__(self, solver, modelFunction, costFunction,
user_params, num_inputs, num_ssvar=1,
PH_length=1, knot_length=1, time_step=0.025,
appx_zero=1e-6, step_size=1e-3, max_iter=10,
model_type='discrete'):
self.solver = solver
self.model = modelFunction
self.cost = costFunction
self.params = user_params
self.u_num = num_inputs
self.x_num = num_ssvar
self.PH = PH_length
self.k = knot_length
self.dt = time_step
self.zero = appx_zero
self.h = step_size
self.n_max = max_iter
self.type = model_type
self._dt_min = 1e-3
self._alpha = 1
self._bkl_shrink = 0.1
self._a_method = None
def setParams(self, user_params):
self.params = user_params
return 1
def setMinTimeStep(self, min_time_step):
self._dt_min = min_time_step
return 1
def getMinTimeStep(self):
return self._dt_min
def setAlpha(self, a):
self._alpha = a
return 1
def getAlpha(self):
return self._alpha
def setAlphaMethod(self, method, shrink=0.1):
self._a_method = method
self._bkl_shink = shrink
return 1
def getAlphaMethod(self):
return self._a_method
def solve(self, x0, uinit, output=0, saveflow=0):
# if (self.solver == 'fdp'):
# t = time.time()
# results = self.fdp(x0, uinit, PH=self.PH, output=output)
# elapsed = 1000*(time.time() - t)
# return results, elapsed
if (self.solver == 'ngd'):
t = time.time()
(u, C, n, brk, uflow) = self.ngd(x0, uinit, output, saveflow)
elapsed = 1000*(time.time() - t)
return (u, C, n, brk, elapsed, uflow)
def ngd(self, x0, uinit, output=0, saveflow=0):
# MPC constants initialization
N = self.u_num
P = self.PH
eps = self.zero
imax = self.n_max
params = self.params
# step size coefficient choice
alpha = self._alpha
a_method = self._a_method
# loop variable setup
uc = uinit
x = self.simulate(x0, uc)
Cc = self.cost(self, x, uc)
un = uc; Cn = Cc
if saveflow:
uflow = [0 for i in range(imax+1)]
uflow[0] = uinit
else:
uflow = None
if output:
print("Opt. Start:")
print("Initial Cost: ", Cc)
count = 0
brk = -2*math.isnan(Cc)
# cost function must be positive
while (Cc > eps):
# calculate the gradient around the current input
g = self.gradient(x0, uc)
gnorm = sum([g[i]**2 for i in range(N)])
# check if gradient-norm is an approx. of zero
if (gnorm < eps**2):
brk = 1
break
# calculate the next iteration of the input
if (a_method == "bkl"):
(un, Cn, _, _, _) = self.alpha_bkl(g, Cc, x0, uc)
else:
un = [uc[i] - alpha*g[i] for i in range(P*N)]
x = self.simulate(x0, un)
Cn = self.cost(self, x, un)
count += 1 # iterate the loop counter
if saveflow:
uflow[count] = un
if (math.isnan(Cn)):
brk = -2
break
if output:
# print("Gradient: ", g)
print("|g|: ", gnorm)
print("New Cost: ", Cn)
print("New Input: ")
for i in range(0, N*P, N):
print(" ", [un[i+j] for j in range(N)])
# break conditions
if (count > imax-1):
brk = -1
break
if (math.fabs(Cn - Cc) < eps):
brk = 2
break
# update loop variables
uc = un; Cc = Cn
if (saveflow) & (brk != -1):
uflow[count+1:] = [uc for i in range(count+1,imax)]
return (un, Cn, count, brk, uflow)
def gradient(self, x0, u, rownum=1):
# variable setup
N = self.u_num*self.PH
h = self.h
g = [0 for i in range(N)]
for i in range(rownum-1, N):
un1 = [u[j] - (i==j)*h for j in range(N)]
up1 = [u[j] + (i==j)*h for j in range(N)]
xn1 = self.simulate(x0, un1)
xp1 = self.simulate(x0, up1)
Cn1 = self.cost(self, xn1, un1)
Cp1 = self.cost(self, xp1, up1)
g[i] = (Cp1 - Cn1)/(2*h)
return g
def alpha_bkl(self, g, C, x0, uc):
P = self.PH
N = self.u_num
eps = self.zero
a = self._alpha
w = self._bkl_shrink
params = self.params
count = 0
brk = -1
while ((count != 1000) & (a > eps)):
ubkl = [uc[i] - a*g[i] for i in range(P*N)]
x = self.simulate(x0, ubkl)
Cbkl = self.cost(self, x, ubkl)
count += 1
if (Cbkl < C):
brk = 0
break
a *= (1 - w)
return (ubkl, Cbkl, a, count, brk)
def simulate(self, x0, u):
# mpc variables
N = self.x_num
Nu = self.u_num
P = self.PH
params = self.params
# reshape input variable
uc = [u[i:i+Nu] for i in range(0,P*Nu,Nu)]
# Cost of each input over the designated windows
# simulate over the prediction horizon and sum cost
x = [[0 for i in range(N)] for j in range(P+1)]
x[0] = x0
for i in range(P):
if self.type == 'continuous':
x[i+1] = self.modeuler(x[i], uc[i])[1][-1]
elif self.type =='discrete':
x[i+1] = self.discrete(x[i], uc[i])[1]
return x
def modeuler(self, x0, u, knot_length=0):
N = self.x_num
P = self.PH
dt = self.dt
dt_min = self._dt_min
params = self.params
if (knot_length == 0): k = self.k
else: k = knot_length
if (dt >= dt_min): adj = int(dt/dt_min)
else: adj = 1
km = k*adj; dtm = dt/adj
x = [[0 for j in range(N)] for i in range(k+1)]
xm = [[0 for j in range(N)] for i in range(km+1)]
x[0] = x0
xm[0] = x0
for i in range(km):
dx1 = self.model(xm[i], u, params)
xeu = [xm[i][j] + dx1[j]*dtm for j in range(N)]
dx2 = self.model(xeu, u, params)
xm[i+1] = [xm[i][j] + 1/2*(dx1[j] + dx2[j])*dtm for j in range(N)]
if ((i+1) % adj == 0): x[int(i/adj+1)] = xm[i+1]
T = [i*dt for i in range(k+1)]
return (T, x)
def discrete(self, x0, u, knot_length=0):
N = self.x_num
P = self.PH
dt = self.dt
params = self.params
if (knot_length == 0): k = self.k
else: k = knot_length
x = [0 for i in range(k+1)]
xk = [0 for i in range(k+1)]
x[0] = x0
xk[0] = x0
for i in range(k):
xk[i+1] = self.model(xk[i], u, params)
x = xk[-1]
T = [i*dt for i in range(k+1)]
return (T, x)
def sim_root(self, sim_time, x0, u0, callback=None, saveflow=0, output=0):
# mpc variables
N = self.u_num
P = self.PH
dt = self.dt
params = self.params
# simulation time variables
Nt = int(sim_time/dt+1)
T = [i*dt for i in range(Nt)]
# state matrices declarations
xlist = [0 for i in range(Nt)]
xlist[0] = x0
# return variables
ulist = [0 for i in range(Nt)]
Clist = [0 for i in range(Nt)]
nlist = [0 for i in range(Nt)]
brklist = [100 for i in range(Nt)]
tlist = [0 for i in range(Nt)]
glist = [0 for i in range(Nt)]
ulist[0] = u0
uguess = u0
for i in range(1,Nt):
if output: print("\nTime: %0.3f" % (T[i]))
# uguess[:-N] = ulist[i-1][N:]
# uguess[-N:] = [0 for i in range(N)]
uguess = ulist[i-1]
opt_results = self.solve(xlist[i-1], uguess, output, saveflow)
ulist[i] = opt_results[0]
Clist[i] = opt_results[1]
nlist[i] = opt_results[2]
brklist[i] = opt_results[3]
tlist[i] = opt_results[4]
glist[i] = opt_results[5]
if output: print("Elapsed Time:\n ", tlist[i])
if self.type == 'continuous':
xlist[i] = self.modeuler(xlist[i-1], ulist[i][:N])[1][1]
elif self.type == 'discrete':
xlist[i] = self.discrete(xlist[i-1], ulist[i][:N])[1]
if (callback is not None): self.params = callback(self, T[i], xlist[i], ulist[i])
return (T, xlist, ulist, Clist, nlist, brklist, tlist, glist)