|
| 1 | +import os |
| 2 | +import numpy as np |
| 3 | +import random |
| 4 | +import mindspore as ms |
| 5 | +from mindspore import nn, ops, Tensor, set_seed |
| 6 | +from mindspore.dataset import GeneratorDataset |
| 7 | +from mindnlp.transformers import AutoModelForSeq2SeqLM, BartphoTokenizer |
| 8 | +from mindnlp.engine import Trainer, TrainingArguments, TrainerCallback |
| 9 | +from datasets import load_dataset |
| 10 | + |
| 11 | +import evaluate |
| 12 | + |
| 13 | +# 加载评估指标 |
| 14 | +sacrebleu_metric = evaluate.load("sacrebleu") |
| 15 | + |
| 16 | +# 定义模型和数据路径 |
| 17 | +MODEL_NAME = "vinai/bartpho-syllable" |
| 18 | +MAX_LENGTH = 32 # 最大序列长度 |
| 19 | +output_dir = './saved_model_weights' # 模型保存路径 |
| 20 | +os.makedirs(output_dir, exist_ok=True) |
| 21 | + |
| 22 | + |
| 23 | +# 自定义训练回调函数来打印每个epoch的loss |
| 24 | +class LossLoggerCallback(TrainerCallback): |
| 25 | + def on_epoch_end(self, args, state, control, **kwargs): |
| 26 | + """在每个epoch结束时调用""" |
| 27 | + # 获取当前训练信息 |
| 28 | + epoch = state.epoch |
| 29 | + loss = state.log_history[-1].get('loss', 0.0) if state.log_history else 0.0 |
| 30 | + |
| 31 | + # 打印当前epoch的训练loss |
| 32 | + print(f"Epoch {epoch}: train_loss = {loss:.6f}") |
| 33 | + |
| 34 | + # 如果有评估结果,也打印出来 |
| 35 | + if 'eval_loss' in state.log_history[-1]: |
| 36 | + eval_loss = state.log_history[-1].get('eval_loss', 0.0) |
| 37 | + eval_metric = state.log_history[-1].get('eval_sacrebleu', 0.0) |
| 38 | + print(f"Epoch {epoch}: eval_loss = {eval_loss:.6f}, eval_sacrebleu = {eval_metric:.4f}") |
| 39 | + |
| 40 | + |
| 41 | +# 数据预处理函数 |
| 42 | +def preprocess_function(examples): |
| 43 | + # 对输入和目标文本进行tokenize |
| 44 | + return tokenizer( |
| 45 | + examples["error"], |
| 46 | + text_target=examples["original"], |
| 47 | + max_length=MAX_LENGTH, |
| 48 | + truncation=True, |
| 49 | + padding="max_length" |
| 50 | + ) |
| 51 | + |
| 52 | + |
| 53 | +# 计算评估指标 |
| 54 | +def compute_metrics(eval_preds): |
| 55 | + preds, labels = eval_preds |
| 56 | + |
| 57 | + # 如果模型返回的是元组,取第一个元素(预测logits) |
| 58 | + if isinstance(preds, tuple): |
| 59 | + preds = preds[0] |
| 60 | + |
| 61 | + # 解码预测和标签 |
| 62 | + decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) |
| 63 | + |
| 64 | + # 处理标签中的pad token |
| 65 | + labels = np.where(labels != -100, labels, tokenizer.pad_token_id) |
| 66 | + decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) |
| 67 | + |
| 68 | + # 简单的后处理 |
| 69 | + decoded_preds = [pred.strip() for pred in decoded_preds] |
| 70 | + decoded_labels = [[label.strip()] for label in decoded_labels] # sacrebleu需要列表的列表 |
| 71 | + |
| 72 | + # 计算BLEU分数 |
| 73 | + result = sacrebleu_metric.compute( |
| 74 | + predictions=decoded_preds, |
| 75 | + references=decoded_labels |
| 76 | + ) |
| 77 | + |
| 78 | + return { |
| 79 | + "sacrebleu": round(result["score"], 4) |
| 80 | + } |
| 81 | + |
| 82 | + |
| 83 | +# 为MindSpore创建数据集 |
| 84 | +def create_mindspore_dataset(data, batch_size=8): |
| 85 | + data_list = list(data) |
| 86 | + |
| 87 | + def generator(): |
| 88 | + for item in data_list: |
| 89 | + yield ( |
| 90 | + Tensor(item["input_ids"], dtype=ms.int32), |
| 91 | + Tensor(item["attention_mask"], dtype=ms.int32), |
| 92 | + Tensor(item["labels"], dtype=ms.int32) |
| 93 | + ) |
| 94 | + |
| 95 | + return GeneratorDataset( |
| 96 | + generator, |
| 97 | + column_names=["input_ids", "attention_mask", "labels"] |
| 98 | + ).batch(batch_size) |
| 99 | + |
| 100 | + |
| 101 | +# 对logits进行预处理,防止内存溢出 |
| 102 | +def preprocess_logits_for_metrics(logits, labels): |
| 103 | + """防止内存溢出""" |
| 104 | + pred_ids = ms.mint.argmax(logits[0], dim=-1) |
| 105 | + return pred_ids, labels |
| 106 | + |
| 107 | + |
| 108 | +# 主函数 |
| 109 | +def main(): |
| 110 | + global tokenizer # 使tokenizer在函数外可用 |
| 111 | + |
| 112 | + # 加载模型和tokenizer |
| 113 | + print("正在加载模型和tokenizer...") |
| 114 | + tokenizer = BartphoTokenizer.from_pretrained(MODEL_NAME) |
| 115 | + model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME) |
| 116 | + |
| 117 | + # 加载数据集 |
| 118 | + print("正在加载数据集...") |
| 119 | + train_path = './train.csv' |
| 120 | + test_path = './test.csv' |
| 121 | + dataset = load_dataset("csv", data_files={"train": train_path, "test": test_path}) |
| 122 | + |
| 123 | + print(f"训练集样本数: {len(dataset['train'])}") |
| 124 | + print(f"测试集样本数: {len(dataset['test'])}") |
| 125 | + |
| 126 | + # 数据预处理 |
| 127 | + print("正在进行数据预处理...") |
| 128 | + tokenized_datasets = dataset.map( |
| 129 | + preprocess_function, |
| 130 | + batched=True, |
| 131 | + remove_columns=dataset["train"].column_names, |
| 132 | + ) |
| 133 | + |
| 134 | + # 创建MindSpore数据集 |
| 135 | + print("正在创建MindSpore数据集...") |
| 136 | + train_dataset = create_mindspore_dataset(tokenized_datasets["train"], batch_size=8) |
| 137 | + eval_dataset = create_mindspore_dataset(tokenized_datasets["test"], batch_size=8) |
| 138 | + |
| 139 | + # 定义训练参数 |
| 140 | + training_args = TrainingArguments( |
| 141 | + output_dir="./results", |
| 142 | + evaluation_strategy="epoch", |
| 143 | + learning_rate=1e-5, |
| 144 | + per_device_train_batch_size=8, |
| 145 | + per_device_eval_batch_size=8, |
| 146 | + num_train_epochs=5, |
| 147 | + weight_decay=0.01, |
| 148 | + save_strategy="epoch", |
| 149 | + save_total_limit=2, |
| 150 | + ) |
| 151 | + |
| 152 | + # 初始化训练器 |
| 153 | + print("初始化训练器...") |
| 154 | + trainer = Trainer( |
| 155 | + model=model, |
| 156 | + args=training_args, |
| 157 | + train_dataset=train_dataset, |
| 158 | + eval_dataset=eval_dataset, |
| 159 | + tokenizer=tokenizer, |
| 160 | + compute_metrics=compute_metrics, |
| 161 | + preprocess_logits_for_metrics=preprocess_logits_for_metrics, |
| 162 | + callbacks=[LossLoggerCallback()] |
| 163 | + ) |
| 164 | + |
| 165 | + # 开始训练 |
| 166 | + print("开始训练...") |
| 167 | + trainer.train() |
| 168 | + # 保存模型 |
| 169 | + print(f"训练完成,保存模型到 {output_dir}...") |
| 170 | + model.save_pretrained(output_dir) |
| 171 | + # 模型评估 |
| 172 | + print("进行模型最终评估...") |
| 173 | + eval_results = trainer.evaluate() |
| 174 | + print(f"最终评估结果: {eval_results}") |
| 175 | + |
| 176 | + |
| 177 | +if __name__ == "__main__": |
| 178 | + main() |
0 commit comments