|
| 1 | +/* ---------------------------------------------------------------------- |
| 2 | + * Project: Tiny Training Engine, MCUNetV3 |
| 3 | + * Title: group_pointwise_conv_fp.c |
| 4 | + * |
| 5 | + * Reference papers: |
| 6 | + * - MCUNet: Tiny Deep Learning on IoT Device, NeurIPS 2020 |
| 7 | + * - MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning, NeurIPS 2021 |
| 8 | + * - MCUNetV3: On-Device Training Under 256KB Memory, NeurIPS 2022 |
| 9 | + * Contact authors: |
| 10 | + * - Wei-Chen Wang, [email protected] |
| 11 | + * - Wei-Ming Chen, [email protected] |
| 12 | + |
| 13 | + |
| 14 | + |
| 15 | + |
| 16 | + * |
| 17 | + * Target ISA: ARMv7E-M |
| 18 | + * -------------------------------------------------------------------- */ |
| 19 | + |
| 20 | +#include "tinyengine_function_fp.h" |
| 21 | +#include "tinyengine_function.h" |
| 22 | +#include "nnfunctions_fp.h" |
| 23 | +#define DIM_KER_X (1U) |
| 24 | +#define DIM_KER_Y (1U) |
| 25 | + |
| 26 | +tinyengine_status_fp group_pointwise_conv_fp_in1x1_out1x1_1row10col_uniweight_int8input_inplace(const int8_t* input_data, |
| 27 | + const uint16_t input_height, const uint16_t input_width, const uint16_t input_depth, |
| 28 | + const float* filter_data, const float* bias_data, |
| 29 | + int8_t* output_weight_data, const uint16_t output_height, const uint16_t output_width, const uint16_t output_depth, |
| 30 | + const float output_activation_min, const float output_activation_max, |
| 31 | + float* im2col_data, const uint16_t batches, const uint16_t groups, |
| 32 | + const float* scales, const float learning_rate) { |
| 33 | + (void) input_height; |
| 34 | + (void) input_width; |
| 35 | + |
| 36 | + int group; |
| 37 | + int output_depth_per_group = output_depth / groups; |
| 38 | + |
| 39 | + for (group = 0; group < groups; group++) { |
| 40 | + int i_ch_out; |
| 41 | + |
| 42 | + for (i_ch_out = 0; i_ch_out < output_depth_per_group; i_ch_out+=10) { |
| 43 | + /* Point to the beginning of the im2col buffer where the input is available as a rearranged column */ |
| 44 | + const float input_0 = (float)input_data[group]; |
| 45 | + const float filter[10] = {filter_data[i_ch_out], filter_data[i_ch_out + 1], filter_data[i_ch_out + 2], filter_data[i_ch_out + 3], filter_data[i_ch_out + 4], |
| 46 | + filter_data[i_ch_out + 5], filter_data[i_ch_out + 6], filter_data[i_ch_out + 7], filter_data[i_ch_out + 8], filter_data[i_ch_out + 9]}; |
| 47 | + |
| 48 | + uint16_t col_count_div10 = (output_depth_per_group * DIM_KER_X * DIM_KER_Y) / 10; |
| 49 | + |
| 50 | + while (col_count_div10--) { |
| 51 | + // Assume bias_data as NULL |
| 52 | + float sum[10] = {}; |
| 53 | + |
| 54 | + sum[0] += input_0 * filter[0]; |
| 55 | + sum[1] += input_0 * filter[1]; |
| 56 | + sum[2] += input_0 * filter[2]; |
| 57 | + sum[3] += input_0 * filter[3]; |
| 58 | + sum[4] += input_0 * filter[4]; |
| 59 | + sum[5] += input_0 * filter[5]; |
| 60 | + sum[6] += input_0 * filter[6]; |
| 61 | + sum[7] += input_0 * filter[7]; |
| 62 | + sum[8] += input_0 * filter[8]; |
| 63 | + sum[9] += input_0 * filter[9]; |
| 64 | + |
| 65 | + output_weight_data[i_ch_out + group] -= TN_MIN(TN_MAX(sum[0], output_activation_min), output_activation_max) * scales[i_ch_out] * learning_rate; |
| 66 | + output_weight_data[(i_ch_out + 1) * groups + group] -= TN_MIN(TN_MAX(sum[1], output_activation_min), output_activation_max) * scales[i_ch_out + 1] * learning_rate; |
| 67 | + output_weight_data[(i_ch_out + 2) * groups + group] -= TN_MIN(TN_MAX(sum[2], output_activation_min), output_activation_max) * scales[i_ch_out + 2] * learning_rate; |
| 68 | + output_weight_data[(i_ch_out + 3) * groups + group] -= TN_MIN(TN_MAX(sum[3], output_activation_min), output_activation_max) * scales[i_ch_out + 3] * learning_rate; |
| 69 | + output_weight_data[(i_ch_out + 4) * groups + group] -= TN_MIN(TN_MAX(sum[4], output_activation_min), output_activation_max) * scales[i_ch_out + 4] * learning_rate; |
| 70 | + output_weight_data[(i_ch_out + 5) * groups + group] -= TN_MIN(TN_MAX(sum[5], output_activation_min), output_activation_max) * scales[i_ch_out + 5] * learning_rate; |
| 71 | + output_weight_data[(i_ch_out + 6) * groups + group] -= TN_MIN(TN_MAX(sum[6], output_activation_min), output_activation_max) * scales[i_ch_out + 6] * learning_rate; |
| 72 | + output_weight_data[(i_ch_out + 7) * groups + group] -= TN_MIN(TN_MAX(sum[7], output_activation_min), output_activation_max) * scales[i_ch_out + 7] * learning_rate; |
| 73 | + output_weight_data[(i_ch_out + 8) * groups + group] -= TN_MIN(TN_MAX(sum[8], output_activation_min), output_activation_max) * scales[i_ch_out + 8] * learning_rate; |
| 74 | + output_weight_data[(i_ch_out + 9) * groups + group] -= TN_MIN(TN_MAX(sum[9], output_activation_min), output_activation_max) * scales[i_ch_out + 9] * learning_rate; |
| 75 | + } |
| 76 | + } |
| 77 | + } |
| 78 | + |
| 79 | + /* Return to application */ |
| 80 | + return STATE_SUCCESS_fp; |
| 81 | +} |
| 82 | + |
| 83 | +tinyengine_status_fp group_pointwise_conv_fp_in1x1_out1x1_1row10col_uniweight_inplace(const float* input_data, |
| 84 | + const uint16_t input_height, const uint16_t input_width, const uint16_t input_depth, |
| 85 | + const float* filter_data, const float* bias_data, |
| 86 | + int8_t* output_weight_data, const uint16_t output_height, const uint16_t output_width, const uint16_t output_depth, |
| 87 | + const float output_activation_min, const float output_activation_max, |
| 88 | + float* im2col_data, const uint16_t batches, const uint16_t groups, |
| 89 | + const float* scales, const float learning_rate) { |
| 90 | + (void) input_height; |
| 91 | + (void) input_width; |
| 92 | + |
| 93 | + int group; |
| 94 | + int output_depth_per_group = output_depth / groups; |
| 95 | + |
| 96 | + for(group = 0; group < groups; group++) { |
| 97 | + int i_ch_out; |
| 98 | + |
| 99 | + for (i_ch_out = 0; i_ch_out < output_depth_per_group; i_ch_out+=10) { |
| 100 | + /* Point to the beginning of the im2col buffer where the input is available as a rearranged column */ |
| 101 | + const float input_0 = input_data[group]; |
| 102 | + const float filter[10] = {filter_data[i_ch_out], filter_data[i_ch_out + 1], filter_data[i_ch_out + 2], filter_data[i_ch_out + 3], filter_data[i_ch_out + 4], |
| 103 | + filter_data[i_ch_out + 5], filter_data[i_ch_out + 6], filter_data[i_ch_out + 7], filter_data[i_ch_out + 8], filter_data[i_ch_out + 9]}; |
| 104 | + |
| 105 | + uint16_t col_count_div10 = (output_depth_per_group * DIM_KER_X * DIM_KER_Y) / 10; |
| 106 | + |
| 107 | + while (col_count_div10--) { |
| 108 | + // Assume bias_data as NULL |
| 109 | + float sum[10] = {}; |
| 110 | + |
| 111 | + sum[0] += input_0 * filter[0]; |
| 112 | + sum[1] += input_0 * filter[1]; |
| 113 | + sum[2] += input_0 * filter[2]; |
| 114 | + sum[3] += input_0 * filter[3]; |
| 115 | + sum[4] += input_0 * filter[4]; |
| 116 | + sum[5] += input_0 * filter[5]; |
| 117 | + sum[6] += input_0 * filter[6]; |
| 118 | + sum[7] += input_0 * filter[7]; |
| 119 | + sum[8] += input_0 * filter[8]; |
| 120 | + sum[9] += input_0 * filter[9]; |
| 121 | + |
| 122 | + output_weight_data[i_ch_out + group] -= TN_MIN(TN_MAX(sum[0], output_activation_min), output_activation_max) * scales[i_ch_out] * learning_rate; |
| 123 | + output_weight_data[(i_ch_out + 1) * groups + group] -= TN_MIN(TN_MAX(sum[1], output_activation_min), output_activation_max) * scales[i_ch_out + 1] * learning_rate; |
| 124 | + output_weight_data[(i_ch_out + 2) * groups + group] -= TN_MIN(TN_MAX(sum[2], output_activation_min), output_activation_max) * scales[i_ch_out + 2] * learning_rate; |
| 125 | + output_weight_data[(i_ch_out + 3) * groups + group] -= TN_MIN(TN_MAX(sum[3], output_activation_min), output_activation_max) * scales[i_ch_out + 3] * learning_rate; |
| 126 | + output_weight_data[(i_ch_out + 4) * groups + group] -= TN_MIN(TN_MAX(sum[4], output_activation_min), output_activation_max) * scales[i_ch_out + 4] * learning_rate; |
| 127 | + output_weight_data[(i_ch_out + 5) * groups + group] -= TN_MIN(TN_MAX(sum[5], output_activation_min), output_activation_max) * scales[i_ch_out + 5] * learning_rate; |
| 128 | + output_weight_data[(i_ch_out + 6) * groups + group] -= TN_MIN(TN_MAX(sum[6], output_activation_min), output_activation_max) * scales[i_ch_out + 6] * learning_rate; |
| 129 | + output_weight_data[(i_ch_out + 7) * groups + group] -= TN_MIN(TN_MAX(sum[7], output_activation_min), output_activation_max) * scales[i_ch_out + 7] * learning_rate; |
| 130 | + output_weight_data[(i_ch_out + 8) * groups + group] -= TN_MIN(TN_MAX(sum[8], output_activation_min), output_activation_max) * scales[i_ch_out + 8] * learning_rate; |
| 131 | + output_weight_data[(i_ch_out + 9) * groups + group] -= TN_MIN(TN_MAX(sum[9], output_activation_min), output_activation_max) * scales[i_ch_out + 9] * learning_rate; |
| 132 | + } |
| 133 | + } |
| 134 | + } |
| 135 | + |
| 136 | + /* Return to application */ |
| 137 | + return STATE_SUCCESS_fp; |
| 138 | +} |
0 commit comments