-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathaggregate_numpy.py
408 lines (339 loc) · 12.7 KB
/
aggregate_numpy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import numpy as np
from packaging.version import Version
from .utils import (
aggregate_common_doc,
check_boolean,
funcs_no_separate_nan,
get_func,
isstr,
)
from .utils_numpy import (
aliasing,
check_dtype,
check_fill_value,
input_validation,
iscomplexobj,
maxval,
minimum_dtype,
minimum_dtype_scalar,
minval,
)
def _full(size, fill_value, *, dtype=None, like=None):
"""Backcompat for numpy < 1.20.0 which does not support the `like` kwarg"""
if (
like is not None # numpy bug?
and not np.isscalar(like) # scalars don't work
and Version(np.__version__) >= Version("1.20.0")
):
kwargs = {"like": like}
else:
kwargs = {}
return np.full(size, fill_value=fill_value, dtype=dtype, **kwargs)
def _sum(group_idx, a, size, fill_value, dtype=None):
dtype = minimum_dtype_scalar(fill_value, dtype, a)
if np.ndim(a) == 0:
ret = np.bincount(group_idx, minlength=size).astype(dtype, copy=False)
if a != 1:
ret *= a
else:
if iscomplexobj(a):
ret = np.empty(size, dtype=dtype)
ret.real = np.bincount(group_idx, weights=a.real, minlength=size)
ret.imag = np.bincount(group_idx, weights=a.imag, minlength=size)
else:
ret = np.bincount(group_idx, weights=a, minlength=size).astype(
dtype, copy=False
)
if fill_value != 0:
_fill_untouched(group_idx, ret, fill_value)
return ret
def _prod(group_idx, a, size, fill_value, dtype=None):
dtype = minimum_dtype_scalar(fill_value, dtype, a)
ret = _full(size, fill_value, dtype=dtype, like=a)
if fill_value != 1:
ret[group_idx] = 1 # product starts from 1
np.multiply.at(ret, group_idx, a)
return ret
def _len(group_idx, a, size, fill_value, dtype=None):
return _sum(group_idx, 1, size, fill_value, dtype=int)
def _last(group_idx, a, size, fill_value, dtype=None):
dtype = minimum_dtype(fill_value, dtype or a.dtype)
ret = _full(size, fill_value, dtype=dtype, like=a)
# repeated indexing gives last value, see:
# the phrase "leaving behind the last value" on this page:
# http://wiki.scipy.org/Tentative_NumPy_Tutorial
ret[group_idx] = a
return ret
def _first(group_idx, a, size, fill_value, dtype=None):
dtype = minimum_dtype(fill_value, dtype or a.dtype)
ret = _full(size, fill_value, dtype=dtype, like=a)
ret[group_idx[::-1]] = a[::-1] # same trick as _last, but in reverse
return ret
def _all(group_idx, a, size, fill_value, dtype=None):
check_boolean(fill_value)
ret = _full(size, fill_value, dtype=bool, like=a)
if not fill_value:
ret[group_idx] = True
ret[group_idx.compress(np.logical_not(a))] = False
return ret
def _any(group_idx, a, size, fill_value, dtype=None):
check_boolean(fill_value)
ret = _full(size, fill_value, dtype=bool, like=a)
if fill_value:
ret[group_idx] = False
ret[group_idx.compress(a)] = True
return ret
def _min(group_idx, a, size, fill_value, dtype=None):
dtype = minimum_dtype(fill_value, dtype or a.dtype)
dmax = maxval(fill_value, dtype)
ret = _full(size, fill_value, dtype=dtype, like=a)
if fill_value != dmax:
ret[group_idx] = dmax # min starts from maximum
np.minimum.at(ret, group_idx, a)
return ret
def _max(group_idx, a, size, fill_value, dtype=None):
dtype = minimum_dtype(fill_value, dtype or a.dtype)
dmin = minval(fill_value, dtype)
ret = _full(size, fill_value, dtype=dtype, like=a)
if fill_value != dmin:
ret[group_idx] = dmin # max starts from minimum
np.maximum.at(ret, group_idx, a)
return ret
def _argmax(group_idx, a, size, fill_value, dtype=int, _nansqueeze=False):
a_ = np.where(np.isnan(a), -np.inf, a) if _nansqueeze else a
group_max = _max(group_idx, a_, size, np.nan)
# nan should never be maximum, so use a and not a_
is_max = a == group_max[group_idx]
ret = _full(size, fill_value, dtype=dtype, like=a)
group_idx_max = group_idx[is_max]
(argmax,) = is_max.nonzero()
ret[group_idx_max[::-1]] = argmax[
::-1
] # reverse to ensure first value for each group wins
return ret
def _argmin(group_idx, a, size, fill_value, dtype=int, _nansqueeze=False):
a_ = np.where(np.isnan(a), np.inf, a) if _nansqueeze else a
group_min = _min(group_idx, a_, size, np.nan)
# nan should never be minimum, so use a and not a_
is_min = a == group_min[group_idx]
ret = _full(size, fill_value, dtype=dtype, like=a)
group_idx_min = group_idx[is_min]
(argmin,) = is_min.nonzero()
ret[group_idx_min[::-1]] = argmin[
::-1
] # reverse to ensure first value for each group wins
return ret
def _mean(group_idx, a, size, fill_value, dtype=np.dtype(np.float64)):
if np.ndim(a) == 0:
raise ValueError("cannot take mean with scalar a")
counts = np.bincount(group_idx, minlength=size)
if iscomplexobj(a):
dtype = a.dtype # TODO: this is a bit clumsy
sums = np.empty(size, dtype=dtype, like=a)
sums.real = np.bincount(group_idx, weights=a.real, minlength=size)
sums.imag = np.bincount(group_idx, weights=a.imag, minlength=size)
else:
sums = np.bincount(group_idx, weights=a, minlength=size).astype(
dtype, copy=False
)
with np.errstate(divide="ignore", invalid="ignore"):
ret = sums.astype(dtype, copy=False) / counts
if not np.isnan(fill_value):
ret[counts == 0] = fill_value
return ret
def _sum_of_squres(group_idx, a, size, fill_value, dtype=np.dtype(np.float64)):
ret = np.bincount(group_idx, weights=a * a, minlength=size)
if fill_value != 0:
counts = np.bincount(group_idx, minlength=size)
ret[counts == 0] = fill_value
return ret
def _var(
group_idx, a, size, fill_value, dtype=np.dtype(np.float64), sqrt=False, ddof=0
):
if np.ndim(a) == 0:
raise ValueError("cannot take variance with scalar a")
counts = np.bincount(group_idx, minlength=size)
sums = np.bincount(group_idx, weights=a, minlength=size)
with np.errstate(divide="ignore", invalid="ignore"):
means = sums.astype(dtype, copy=False) / counts
counts = np.where(counts > ddof, counts - ddof, 0)
ret = (
np.bincount(group_idx, (a - means[group_idx]) ** 2, minlength=size) / counts
)
if sqrt:
ret = np.sqrt(ret) # this is now std not var
if not np.isnan(fill_value):
ret[counts == 0] = fill_value
return ret
def _std(group_idx, a, size, fill_value, dtype=np.dtype(np.float64), ddof=0):
return _var(group_idx, a, size, fill_value, dtype=dtype, sqrt=True, ddof=ddof)
def _allnan(group_idx, a, size, fill_value, dtype=bool):
return _all(group_idx, np.isnan(a), size, fill_value=fill_value, dtype=dtype)
def _anynan(group_idx, a, size, fill_value, dtype=bool):
return _any(group_idx, np.isnan(a), size, fill_value=fill_value, dtype=dtype)
def _sort(group_idx, a, size=None, fill_value=None, dtype=None, reverse=False):
sortidx = np.lexsort((-a if reverse else a, group_idx))
# Reverse sorting back to into grouped order, but preserving groupwise sorting
revidx = np.argsort(np.argsort(group_idx, kind="mergesort"), kind="mergesort")
return a[sortidx][revidx]
def _array(group_idx, a, size, fill_value, dtype=None):
"""groups a into separate arrays, keeping the order intact."""
if fill_value is not None and not (np.isscalar(fill_value) or len(fill_value) == 0):
raise ValueError("fill_value must be None, a scalar or an empty " "sequence")
order_group_idx = np.argsort(group_idx, kind="mergesort")
counts = np.bincount(group_idx, minlength=size)
ret = np.split(a[order_group_idx], np.cumsum(counts)[:-1])
ret = np.asanyarray(ret, dtype="object")
if fill_value is None or np.isscalar(fill_value):
_fill_untouched(group_idx, ret, fill_value)
return ret
def _generic_callable(
group_idx, a, size, fill_value, dtype=None, func=lambda g: g, **kwargs
):
"""groups a by inds, and then applies foo to each group in turn, placing
the results in an array."""
groups = _array(group_idx, a, size, ())
ret = _full(size, fill_value, dtype=dtype or np.float64)
for i, grp in enumerate(groups):
if np.ndim(grp) == 1 and len(grp) > 0:
ret[i] = func(grp)
return ret
def _cumsum(group_idx, a, size, fill_value=None, dtype=None):
"""
N to N aggregate operation of cumsum. Perform cumulative sum for each group.
group_idx = np.array([4, 3, 3, 4, 4, 1, 1, 1, 7, 8, 7, 4, 3, 3, 1, 1])
a = np.array([3, 4, 1, 3, 9, 9, 6, 7, 7, 0, 8, 2, 1, 8, 9, 8])
_cumsum(group_idx, a, np.max(group_idx) + 1)
>>> array([ 3, 4, 5, 6, 15, 9, 15, 22, 7, 0, 15, 17, 6, 14, 31, 39])
"""
sortidx = np.argsort(group_idx, kind="mergesort")
invsortidx = np.argsort(sortidx, kind="mergesort")
group_idx_srt = group_idx[sortidx]
a_srt = a[sortidx]
a_srt_cumsum = np.cumsum(a_srt, dtype=dtype)
increasing = np.arange(len(a), dtype=int)
group_starts = _min(group_idx_srt, increasing, size, fill_value=0)[group_idx_srt]
a_srt_cumsum += -a_srt_cumsum[group_starts] + a_srt[group_starts]
return a_srt_cumsum[invsortidx]
def _nancumsum(group_idx, a, size, fill_value=None, dtype=None):
a_nonans = np.where(np.isnan(a), 0, a)
group_idx_nonans = np.where(
np.isnan(group_idx), np.nanmax(group_idx) + 1, group_idx
)
return _cumsum(group_idx_nonans, a_nonans, size, fill_value=fill_value, dtype=dtype)
_impl_dict = dict(
min=_min,
max=_max,
sum=_sum,
prod=_prod,
last=_last,
first=_first,
all=_all,
any=_any,
mean=_mean,
std=_std,
var=_var,
anynan=_anynan,
allnan=_allnan,
sort=_sort,
array=_array,
argmax=_argmax,
argmin=_argmin,
len=_len,
cumsum=_cumsum,
sumofsquares=_sum_of_squres,
generic=_generic_callable,
)
_impl_dict.update(
("nan" + k, v)
for k, v in list(_impl_dict.items())
if k not in funcs_no_separate_nan
)
def _aggregate_base(
group_idx,
a,
func="sum",
size=None,
fill_value=0,
order="C",
dtype=None,
axis=None,
_impl_dict=_impl_dict,
is_pandas=False,
**kwargs
):
iv = input_validation(group_idx, a, size=size, order=order, axis=axis, func=func)
group_idx, a, flat_size, ndim_idx, size, unravel_shape = iv
if group_idx.dtype == np.dtype("uint64"):
# Force conversion to signed int, to avoid issues with bincount etc later
group_idx = group_idx.astype(int)
func = get_func(func, aliasing, _impl_dict)
if not isstr(func):
# do simple grouping and execute function in loop
ret = _impl_dict.get("generic", _generic_callable)(
group_idx, a, flat_size, fill_value, func=func, dtype=dtype, **kwargs
)
else:
# deal with nans and find the function
if func.startswith("nan"):
if np.ndim(a) == 0:
raise ValueError("nan-version not supported for scalar input.")
if "nan" in func:
if "arg" in func:
kwargs["_nansqueeze"] = True
else:
good = ~np.isnan(a)
if "len" not in func or is_pandas:
# a is not needed for len, nanlen!
a = a[good]
group_idx = group_idx[good]
dtype = check_dtype(dtype, func, a, flat_size)
check_fill_value(fill_value, dtype, func=func)
func = _impl_dict[func]
ret = func(
group_idx, a, flat_size, fill_value=fill_value, dtype=dtype, **kwargs
)
# deal with ndimensional indexing
if ndim_idx > 1:
if unravel_shape is not None:
# A negative fill_value cannot, and should not, be unraveled.
mask = ret == fill_value
ret[mask] = 0
ret = np.unravel_index(ret, unravel_shape)[axis]
ret[mask] = fill_value
ret = ret.reshape(size, order=order)
return ret
def aggregate(
group_idx,
a,
func="sum",
size=None,
fill_value=0,
order="C",
dtype=None,
axis=None,
**kwargs
):
return _aggregate_base(
group_idx,
a,
size=size,
fill_value=fill_value,
order=order,
dtype=dtype,
func=func,
axis=axis,
_impl_dict=_impl_dict,
**kwargs
)
aggregate.__doc__ = (
"""
This is the pure numpy implementation of aggregate.
"""
+ aggregate_common_doc
)
def _fill_untouched(idx, ret, fill_value):
"""any elements of ret not indexed by idx are set to fill_value."""
untouched = np.ones_like(ret, dtype=bool)
untouched[idx] = False
ret[untouched] = fill_value