forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_embedding.py
282 lines (240 loc) · 9.56 KB
/
test_embedding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# SPDX-License-Identifier: Apache-2.0
import base64
import numpy as np
import openai
import pytest
import pytest_asyncio
import requests
from vllm.entrypoints.openai.protocol import EmbeddingResponse
from vllm.transformers_utils.tokenizer import get_tokenizer
from ...models.embedding.utils import check_embeddings_close
from ...utils import RemoteOpenAIServer
MODEL_NAME = "intfloat/multilingual-e5-small"
DUMMY_CHAT_TEMPLATE = """{% for message in messages %}{{message['role'] + ': ' + message['content'] + '\\n'}}{% endfor %}""" # noqa: E501
@pytest.fixture(scope="module")
def server():
args = [
"--task",
"embed",
# use half precision for speed and memory savings in CI environment
"--dtype",
"bfloat16",
"--enforce-eager",
"--max-model-len",
"512",
"--chat-template",
DUMMY_CHAT_TEMPLATE,
]
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
yield remote_server
@pytest_asyncio.fixture
async def client(server):
async with server.get_async_client() as async_client:
yield async_client
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_single_embedding(client: openai.AsyncOpenAI, model_name: str):
input_texts = [
"The chef prepared a delicious meal.",
]
# test single embedding
embedding_response = await client.embeddings.create(
model=model_name,
input=input_texts,
encoding_format="float",
)
embeddings = EmbeddingResponse.model_validate(
embedding_response.model_dump(mode="json"))
assert embeddings.id is not None
assert len(embeddings.data) == 1
assert len(embeddings.data[0].embedding) == 384
assert embeddings.usage.completion_tokens == 0
assert embeddings.usage.prompt_tokens == 11
assert embeddings.usage.total_tokens == 11
# test using token IDs
input_tokens = [1, 1, 1, 1, 1]
embedding_response = await client.embeddings.create(
model=model_name,
input=input_tokens,
encoding_format="float",
)
embeddings = EmbeddingResponse.model_validate(
embedding_response.model_dump(mode="json"))
assert embeddings.id is not None
assert len(embeddings.data) == 1
assert len(embeddings.data[0].embedding) == 384
assert embeddings.usage.completion_tokens == 0
assert embeddings.usage.prompt_tokens == 5
assert embeddings.usage.total_tokens == 5
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_batch_embedding(client: openai.AsyncOpenAI, model_name: str):
# test list[str]
input_texts = [
"The cat sat on the mat.", "A feline was resting on a rug.",
"Stars twinkle brightly in the night sky."
]
embedding_response = await client.embeddings.create(
model=model_name,
input=input_texts,
encoding_format="float",
)
embeddings = EmbeddingResponse.model_validate(
embedding_response.model_dump(mode="json"))
assert embeddings.id is not None
assert len(embeddings.data) == 3
assert len(embeddings.data[0].embedding) == 384
assert embeddings.usage.completion_tokens == 0
assert embeddings.usage.prompt_tokens == 33
assert embeddings.usage.total_tokens == 33
# test list[list[int]]
input_tokens = [[4, 5, 7, 9, 20], [15, 29, 499], [24, 24, 24, 24, 24],
[25, 32, 64, 77]]
embedding_response = await client.embeddings.create(
model=model_name,
input=input_tokens,
encoding_format="float",
)
embeddings = EmbeddingResponse.model_validate(
embedding_response.model_dump(mode="json"))
assert embeddings.id is not None
assert len(embeddings.data) == 4
assert len(embeddings.data[0].embedding) == 384
assert embeddings.usage.completion_tokens == 0
assert embeddings.usage.prompt_tokens == 17
assert embeddings.usage.total_tokens == 17
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_conversation_embedding(server: RemoteOpenAIServer,
client: openai.AsyncOpenAI,
model_name: str):
messages = [{
"role": "user",
"content": "The cat sat on the mat.",
}, {
"role": "assistant",
"content": "A feline was resting on a rug.",
}, {
"role": "user",
"content": "Stars twinkle brightly in the night sky.",
}]
chat_response = requests.post(
server.url_for("v1/embeddings"),
json={
"model": model_name,
"messages": messages,
"encoding_format": "float",
},
)
chat_response.raise_for_status()
chat_embeddings = EmbeddingResponse.model_validate(chat_response.json())
tokenizer = get_tokenizer(tokenizer_name=model_name, tokenizer_mode="fast")
prompt = tokenizer.apply_chat_template(
messages,
chat_template=DUMMY_CHAT_TEMPLATE,
add_generation_prompt=True,
continue_final_message=False,
tokenize=False,
)
completion_response = await client.embeddings.create(
model=model_name,
input=prompt,
encoding_format="float",
# To be consistent with chat
extra_body={"add_special_tokens": False},
)
completion_embeddings = EmbeddingResponse.model_validate(
completion_response.model_dump(mode="json"))
assert chat_embeddings.id is not None
assert completion_embeddings.id is not None
assert chat_embeddings.created <= completion_embeddings.created
assert chat_embeddings.model_dump(
exclude={"id", "created"}) == (completion_embeddings.model_dump(
exclude={"id", "created"}))
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_batch_base64_embedding(client: openai.AsyncOpenAI,
model_name: str):
input_texts = [
"Hello my name is",
"The best thing about vLLM is that it supports many different models"
]
responses_float = await client.embeddings.create(input=input_texts,
model=model_name,
encoding_format="float")
float_data = [d.embedding for d in responses_float.data]
responses_base64 = await client.embeddings.create(input=input_texts,
model=model_name,
encoding_format="base64")
base64_data = []
for data in responses_base64.data:
base64_data.append(
np.frombuffer(base64.b64decode(data.embedding),
dtype="float32").tolist())
check_embeddings_close(
embeddings_0_lst=float_data,
embeddings_1_lst=base64_data,
name_0="float",
name_1="base64",
)
# Default response is float32 decoded from base64 by OpenAI Client
responses_default = await client.embeddings.create(input=input_texts,
model=model_name)
default_data = [d.embedding for d in responses_default.data]
check_embeddings_close(
embeddings_0_lst=float_data,
embeddings_1_lst=default_data,
name_0="float",
name_1="default",
)
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_single_embedding_truncation(client: openai.AsyncOpenAI,
model_name: str):
input_texts = [
"Como o Brasil pode fomentar o desenvolvimento de modelos de IA?",
]
# test single embedding
embedding_response = await client.embeddings.create(
model=model_name,
input=input_texts,
extra_body={"truncate_prompt_tokens": 10})
embeddings = EmbeddingResponse.model_validate(
embedding_response.model_dump(mode="json"))
assert embeddings.id is not None
assert len(embeddings.data) == 1
assert len(embeddings.data[0].embedding) == 384
assert embeddings.usage.completion_tokens == 0
assert embeddings.usage.prompt_tokens == 10
assert embeddings.usage.total_tokens == 10
input_tokens = [
1, 24428, 289, 18341, 26165, 285, 19323, 283, 289, 26789, 3871, 28728,
9901, 340, 2229, 385, 340, 315, 28741, 28804, 2
]
embedding_response = await client.embeddings.create(
model=model_name,
input=input_tokens,
extra_body={"truncate_prompt_tokens": 10})
embeddings = EmbeddingResponse.model_validate(
embedding_response.model_dump(mode="json"))
assert embeddings.id is not None
assert len(embeddings.data) == 1
assert len(embeddings.data[0].embedding) == 384
assert embeddings.usage.completion_tokens == 0
assert embeddings.usage.prompt_tokens == 10
assert embeddings.usage.total_tokens == 10
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_single_embedding_truncation_invalid(client: openai.AsyncOpenAI,
model_name: str):
input_texts = [
"Como o Brasil pode fomentar o desenvolvimento de modelos de IA?",
]
with pytest.raises(openai.BadRequestError):
response = await client.embeddings.create(
model=model_name,
input=input_texts,
extra_body={"truncate_prompt_tokens": 8193})
assert "error" in response.object
assert "truncate_prompt_tokens value is greater than max_model_len. "\
"Please, select a smaller truncation size." in response.message