#Increasing Triplet Subsequence ##Problem: Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the array.
Formally the function should:
Return true if there exists i, j, k
such that arr[i] < arr[j] < arr[k] given 0 ≤ i < j < k ≤ n-1 else return false.
Your algorithm should run in O(n) time complexity and O(1) space complexity.
Examples:
Given [1, 2, 3, 4, 5],
return true.
Given [5, 4, 3, 2, 1],
return false.
##Idea:
Modify from Longest Increasing Subsequence
class Solution {
public:
bool increasingTriplet(vector<int>& nums) {
if(nums.empty()) return false;
vector<int> record(3);
record[0]=nums[0];
int currentPosition=0;
for(int i=1;i<nums.size();i++)
{
if(nums[i]>nums[currentPosition])
{
currentPosition++;
if(currentPosition==2) return true;
nums[currentPosition]=nums[i];
}
else
{
for(int j=0;j<=currentPosition;j++)
{
if(nums[j]>=nums[i])
{
nums[j]=nums[i];
break;
}
}
}
}
return false;
}
};
##To Study: A more clean way
class Solution {
public:
bool increasingTriplet(vector<int>& nums) {
int length1=INT_MAX,length2=INT_MAX;
for(int i=0;i<nums.size();i++)
{
if(nums[i]<=length1) length1=nums[i];
else if(nums[i]<=length2) length2=nums[i];
else return true;
}
return false;
}
};