-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanuvaad_scripts.py
273 lines (222 loc) · 17.3 KB
/
anuvaad_scripts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import sys
import os
from onmt.utils.logging import init_logger
import tools.indic_tokenize as hin_tokenizer
import tools.sp_enc_dec as sp
import datetime
import corpus.master_corpus_location as mcl
import corpus.scripts as corpus_scripts
import utils.training_utils.onmt_utils as onmt_utils
import utils.training_utils.pairwise_processing as pairwise_processing
from config.train_model_type import language_pair as lang_pair
date_now = datetime.datetime.now().strftime('%Y-%m-%d')
INTERMEDIATE_DATA_LOCATION = 'intermediate_data/'
TRAIN_DEV_TEST_DATA_LOCATION = 'data/'
NMT_MODEL_DIR = 'model/'
SENTENCEPIECE_MODEL_DIR = 'model/sentencepiece_models/'
TRAIN_LOG_FILE = 'intermediate_data/anuvaad_training_log_file.txt'
logger = init_logger(TRAIN_LOG_FILE)
def english_hindi_experiments(model_type,eng_file,hindi_file,epoch,experiment_key):
try:
experiment_key = experiment_key or "default"
logger.info("request for {} training on {}-{} and epoch:{} for exp:{}".format(model_type,eng_file,hindi_file,epoch,experiment_key))
preprocessed_data = corpus_scripts.english_hindi_experiments(eng_file,hindi_file)
preprocessed_data['experiment_key'] = experiment_key
f_out = pairwise_processing.english_and_hindi(preprocessed_data)
if model_type == lang_pair['en-hi']['en-to-hi']:
training_para = {'train_src':f_out['english_encoded_file'],'train_tgt':f_out['hindi_encoded_file'], \
'valid_src':f_out['english_dev_encoded_file'],"valid_tgt":f_out['hindi_dev_encoded_file'], \
'nmt_processed_data':f_out['nmt_processed_data'],'nmt_model_path':f_out['nmt_model_path'],'epoch':epoch}
elif model_type == lang_pair['en-hi']['hi-to-en']:
training_para = {'train_src':f_out['hindi_encoded_file'],'train_tgt':f_out['english_encoded_file'], \
'valid_src':f_out['hindi_dev_encoded_file'],"valid_tgt":f_out['english_dev_encoded_file'], \
'nmt_processed_data':f_out['nmt_processed_data'],'nmt_model_path':f_out['nmt_model_path'],'epoch':epoch}
onmt_utils.onmt_train(training_para)
except Exception as e:
logger.error("error in english_hindi_experiments anuvaad script: {}".format(e))
def incremental_training(src_sp_model,tgt_sp_model,train_from_model):
try:
"in progress"
print("h")
except Exception as e:
print(e)
logger.info("error in english_hindi anuvaad script: {}".format(e))
def english_tamil(model_type,eng_file,tamil_file,epoch,experiment_key):
try:
experiment_key = experiment_key or "default"
logger.info("request for {} training on {}-{} and epoch:{} for exp:{}".format(model_type,eng_file,tamil_file,epoch,experiment_key))
preprocessed_data = corpus_scripts.english_tamil(eng_file,tamil_file)
preprocessed_data['experiment_key'] = experiment_key
f_out = pairwise_processing.english_and_tamil(preprocessed_data)
if model_type == lang_pair['en-ta']['en-to-ta']:
training_para = {'train_src':f_out['english_encoded_file'],'train_tgt':f_out['tamil_encoded_file'], \
'valid_src':f_out['english_dev_encoded_file'],"valid_tgt":f_out['tamil_dev_encoded_file'], \
'nmt_processed_data':f_out['nmt_processed_data'],'nmt_model_path':f_out['nmt_model_path'],'epoch':epoch}
elif model_type == lang_pair['en-ta']['ta-to-en']:
training_para = {'train_src':f_out['tamil_encoded_file'],'train_tgt':f_out['english_encoded_file'], \
'valid_src':f_out['tamil_dev_encoded_file'],"valid_tgt":f_out['english_dev_encoded_file'], \
'nmt_processed_data':f_out['nmt_processed_data'],'nmt_model_path':f_out['nmt_model_path'],'epoch':epoch}
onmt_utils.onmt_train(training_para)
except Exception as e:
logger.error("error in english_tamil_experiments anuvaad script: {}".format(e))
def english_gujarati(model_type,eng_file,gujarati_file,epoch,experiment_key):
try:
experiment_key = experiment_key or "default"
logger.info("request for {} training on {}-{} and epoch:{} for exp:{}".format(model_type,eng_file,gujarati_file,epoch,experiment_key))
preprocessed_data = corpus_scripts.english_gujarati(eng_file,gujarati_file)
preprocessed_data['experiment_key'] = experiment_key
f_out = pairwise_processing.english_and_gujarati(preprocessed_data)
if model_type == lang_pair['en-gu']['en-to-gu']:
training_para = {'train_src':f_out['english_encoded_file'],'train_tgt':f_out['gujarati_encoded_file'], \
'valid_src':f_out['english_dev_encoded_file'],"valid_tgt":f_out['gujarati_dev_encoded_file'], \
'nmt_processed_data':f_out['nmt_processed_data'],'nmt_model_path':f_out['nmt_model_path'],'epoch':epoch}
elif model_type == lang_pair['en-gu']['gu-to-en']:
training_para = {'train_src':f_out['gujarati_encoded_file'],'train_tgt':f_out['english_encoded_file'], \
'valid_src':f_out['gujarati_dev_encoded_file'],"valid_tgt":f_out['english_dev_encoded_file'], \
'nmt_processed_data':f_out['nmt_processed_data'],'nmt_model_path':f_out['nmt_model_path'],'epoch':epoch}
logger.info("starting onmt_train for :{}".format(model_type))
onmt_utils.onmt_train(training_para)
except Exception as e:
logger.error("error in english_gujarati anuvaad script: {}".format(e))
def english_bengali(model_type,eng_file,bengali_file,epoch,experiment_key):
try:
experiment_key = experiment_key or "default"
logger.info("request for {} training on {}-{} and epoch:{} for exp:{}".format(model_type,eng_file,bengali_file,epoch,experiment_key))
preprocessed_data = corpus_scripts.english_bengali(eng_file,bengali_file)
preprocessed_data['experiment_key'] = experiment_key
f_out = pairwise_processing.english_and_bengali(preprocessed_data)
if model_type == lang_pair['en-bn']['en-to-bn']:
training_para = {'train_src':f_out['english_encoded_file'],'train_tgt':f_out['bengali_encoded_file'], \
'valid_src':f_out['english_dev_encoded_file'],"valid_tgt":f_out['bengali_dev_encoded_file'], \
'nmt_processed_data':f_out['nmt_processed_data'],'nmt_model_path':f_out['nmt_model_path'],'epoch':epoch}
elif model_type == lang_pair['en-bn']['bn-to-en']:
training_para = {'train_src':f_out['bengali_encoded_file'],'train_tgt':f_out['english_encoded_file'], \
'valid_src':f_out['bengali_dev_encoded_file'],"valid_tgt":f_out['english_dev_encoded_file'], \
'nmt_processed_data':f_out['nmt_processed_data'],'nmt_model_path':f_out['nmt_model_path'],'epoch':epoch}
logger.info("starting onmt_train for :{}".format(model_type))
onmt_utils.onmt_train(training_para)
except Exception as e:
logger.error("error in english_bengali anuvaad script: {}".format(e))
def english_marathi(model_type,eng_file,marathi_file,epoch,experiment_key):
try:
experiment_key = experiment_key or "default"
logger.info("request for {} training on {}-{} and epoch:{} for exp:{}".format(model_type,eng_file,marathi_file,epoch,experiment_key))
preprocessed_data = corpus_scripts.english_marathi(eng_file,marathi_file)
preprocessed_data['experiment_key'] = experiment_key
f_out = pairwise_processing.english_and_marathi(preprocessed_data)
if model_type == lang_pair['en-mr']['en-to-mr']:
training_para = {'train_src':f_out['english_encoded_file'],'train_tgt':f_out['marathi_encoded_file'], \
'valid_src':f_out['english_dev_encoded_file'],"valid_tgt":f_out['marathi_dev_encoded_file'], \
'nmt_processed_data':f_out['nmt_processed_data'],'nmt_model_path':f_out['nmt_model_path'],'epoch':epoch}
elif model_type == lang_pair['en-mr']['mr-to-en']:
training_para = {'train_src':f_out['marathi_encoded_file'],'train_tgt':f_out['english_encoded_file'], \
'valid_src':f_out['marathi_dev_encoded_file'],"valid_tgt":f_out['english_dev_encoded_file'], \
'nmt_processed_data':f_out['nmt_processed_data'],'nmt_model_path':f_out['nmt_model_path'],'epoch':epoch}
logger.info("starting onmt_train for :{}".format(model_type))
onmt_utils.onmt_train(training_para)
except Exception as e:
logger.error("error in english_marathi anuvaad script: {}".format(e))
def english_kannada(model_type,eng_file,kannada_file,epoch,experiment_key):
try:
experiment_key = experiment_key or "default"
logger.info("request for {} training on {}-{} and epoch:{} for exp:{}".format(model_type,eng_file,kannada_file,epoch,experiment_key))
preprocessed_data = corpus_scripts.english_kannada(eng_file,kannada_file)
preprocessed_data['experiment_key'] = experiment_key
f_out = pairwise_processing.english_and_kannada(preprocessed_data)
if model_type == lang_pair['en-kn']['en-to-kn']:
training_para = {'train_src':f_out['english_encoded_file'],'train_tgt':f_out['kannada_encoded_file'], \
'valid_src':f_out['english_dev_encoded_file'],"valid_tgt":f_out['kannada_dev_encoded_file'], \
'nmt_processed_data':f_out['nmt_processed_data'],'nmt_model_path':f_out['nmt_model_path'],'epoch':epoch}
elif model_type == lang_pair['en-kn']['kn-to-en']:
training_para = {'train_src':f_out['kannada_encoded_file'],'train_tgt':f_out['english_encoded_file'], \
'valid_src':f_out['kannada_dev_encoded_file'],"valid_tgt":f_out['english_dev_encoded_file'], \
'nmt_processed_data':f_out['nmt_processed_data'],'nmt_model_path':f_out['nmt_model_path'],'epoch':epoch}
logger.info("starting onmt_train for :{}".format(model_type))
onmt_utils.onmt_train(training_para)
except Exception as e:
logger.error("error in english_kannada anuvaad script: {}".format(e))
def english_telugu(model_type,eng_file,telugu_file,epoch,experiment_key):
try:
experiment_key = experiment_key or "default"
logger.info("request for {} training on {}-{} and epoch:{} for exp:{}".format(model_type,eng_file,telugu_file,epoch,experiment_key))
preprocessed_data = corpus_scripts.english_telugu(eng_file,telugu_file)
preprocessed_data['experiment_key'] = experiment_key
f_out = pairwise_processing.english_and_telugu(preprocessed_data)
if model_type == lang_pair['en-te']['en-to-te']:
training_para = {'train_src':f_out['english_encoded_file'],'train_tgt':f_out['telugu_encoded_file'], \
'valid_src':f_out['english_dev_encoded_file'],"valid_tgt":f_out['telugu_dev_encoded_file'], \
'nmt_processed_data':f_out['nmt_processed_data'],'nmt_model_path':f_out['nmt_model_path'],'epoch':epoch}
elif model_type == lang_pair['en-te']['te-to-en']:
training_para = {'train_src':f_out['telugu_encoded_file'],'train_tgt':f_out['english_encoded_file'], \
'valid_src':f_out['telugu_dev_encoded_file'],"valid_tgt":f_out['english_dev_encoded_file'], \
'nmt_processed_data':f_out['nmt_processed_data'],'nmt_model_path':f_out['nmt_model_path'],'epoch':epoch}
logger.info("starting onmt_train for :{}".format(model_type))
onmt_utils.onmt_train(training_para)
except Exception as e:
logger.error("error in english_telugu anuvaad script: {}".format(e))
def english_malayalam(model_type,eng_file,malayalam_file,epoch,experiment_key):
try:
experiment_key = experiment_key or "default"
logger.info("request for {} training on {}-{} and epoch:{} for exp:{}".format(model_type,eng_file,malayalam_file,epoch,experiment_key))
preprocessed_data = corpus_scripts.english_malayalam(eng_file,malayalam_file)
preprocessed_data['experiment_key'] = experiment_key
f_out = pairwise_processing.english_and_malayalam(preprocessed_data)
if model_type == lang_pair['en-ml']['en-to-ml']:
training_para = {'train_src':f_out['english_encoded_file'],'train_tgt':f_out['malayalam_encoded_file'], \
'valid_src':f_out['english_dev_encoded_file'],"valid_tgt":f_out['malayalam_dev_encoded_file'], \
'nmt_processed_data':f_out['nmt_processed_data'],'nmt_model_path':f_out['nmt_model_path'],'epoch':epoch}
elif model_type == lang_pair['en-ml']['ml-to-en']:
training_para = {'train_src':f_out['malayalam_encoded_file'],'train_tgt':f_out['english_encoded_file'], \
'valid_src':f_out['malayalam_dev_encoded_file'],"valid_tgt":f_out['english_dev_encoded_file'], \
'nmt_processed_data':f_out['nmt_processed_data'],'nmt_model_path':f_out['nmt_model_path'],'epoch':epoch}
logger.info("starting onmt_train for :{}".format(model_type))
onmt_utils.onmt_train(training_para)
except Exception as e:
logger.error("error in english_malayalam anuvaad script: {}".format(e))
def english_punjabi(model_type,eng_file,punjabi_file,epoch,experiment_key):
try:
experiment_key = experiment_key or "default"
logger.info("request for {} training on {}-{} and epoch:{} for exp:{}".format(model_type,eng_file,punjabi_file,epoch,experiment_key))
preprocessed_data = corpus_scripts.english_punjabi(eng_file,punjabi_file)
preprocessed_data['experiment_key'] = experiment_key
f_out = pairwise_processing.english_and_punjabi(preprocessed_data)
if model_type == lang_pair['en-pu']['en-to-pu']:
training_para = {'train_src':f_out['english_encoded_file'],'train_tgt':f_out['punjabi_encoded_file'], \
'valid_src':f_out['english_dev_encoded_file'],"valid_tgt":f_out['punjabi_dev_encoded_file'], \
'nmt_processed_data':f_out['nmt_processed_data'],'nmt_model_path':f_out['nmt_model_path'],'epoch':epoch}
elif model_type == lang_pair['en-pu']['pu-to-en']:
training_para = {'train_src':f_out['punjabi_encoded_file'],'train_tgt':f_out['english_encoded_file'], \
'valid_src':f_out['punjabi_dev_encoded_file'],"valid_tgt":f_out['english_dev_encoded_file'], \
'nmt_processed_data':f_out['nmt_processed_data'],'nmt_model_path':f_out['nmt_model_path'],'epoch':epoch}
logger.info("starting onmt_train for :{}".format(model_type))
onmt_utils.onmt_train(training_para)
except Exception as e:
logger.error("error in english_punjabi anuvaad script: {}".format(e))
if __name__ == '__main__':
try:
if sys.argv[1] in [lang_pair['en-ta']['en-to-ta'],lang_pair['en-ta']['ta-to-en']]:
english_tamil(sys.argv[1],sys.argv[2],sys.argv[3],sys.argv[4],sys.argv[5])
elif sys.argv[1] in [lang_pair['en-gu']['en-to-gu'],lang_pair['en-gu']['gu-to-en']]:
english_gujarati(sys.argv[1],sys.argv[2],sys.argv[3],sys.argv[4],sys.argv[5])
elif sys.argv[1] in [lang_pair['en-bn']['en-to-bn'],lang_pair['en-bn']['bn-to-en']]:
english_bengali(sys.argv[1],sys.argv[2],sys.argv[3],sys.argv[4],sys.argv[5])
elif sys.argv[1] in [lang_pair['en-mr']['en-to-mr'],lang_pair['en-mr']['mr-to-en']]:
english_marathi(sys.argv[1],sys.argv[2],sys.argv[3],sys.argv[4],sys.argv[5])
elif sys.argv[1] in [lang_pair['en-kn']['en-to-kn'],lang_pair['en-kn']['kn-to-en']]:
english_kannada(sys.argv[1],sys.argv[2],sys.argv[3],sys.argv[4],sys.argv[5])
elif sys.argv[1] in [lang_pair['en-te']['en-to-te'],lang_pair['en-te']['te-to-en']]:
english_telugu(sys.argv[1],sys.argv[2],sys.argv[3],sys.argv[4],sys.argv[5])
elif sys.argv[1] in [lang_pair['en-ml']['en-to-ml'],lang_pair['en-ml']['ml-to-en']]:
english_malayalam(sys.argv[1],sys.argv[2],sys.argv[3],sys.argv[4],sys.argv[5])
elif sys.argv[1] in [lang_pair['en-pu']['en-to-pu'],lang_pair['en-pu']['pu-to-en']]:
english_punjabi(sys.argv[1],sys.argv[2],sys.argv[3],sys.argv[4],sys.argv[5])
elif sys.argv[1] in [lang_pair['en-hi']['en-to-hi'],lang_pair['en-hi']['hi-to-en']]:
english_hindi_experiments(sys.argv[1],sys.argv[2],sys.argv[3],sys.argv[4],sys.argv[5])
elif sys.argv[1] == "incremental_training":
incremental_training(sys.argv[2],sys.argv[3],sys.argv[4])
else:
logger.error("Invalid request type-{}".format(sys.argv[1]))
except IndexError:
logger.error("Invalid/missing Anuvaad Script calling argument")
except Exception as e:
logger.error("Error while calling Anuvaad Script-{}, Error:{}".format(sys.argv[1],e))