-
Notifications
You must be signed in to change notification settings - Fork 523
/
Copy pathdata_serializer.py
112 lines (84 loc) · 3 KB
/
data_serializer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Dict, List, Sequence
from executorch.exir._serialize._cord import Cord
from executorch.exir.schema import ScalarType
@dataclass
class TensorLayout:
"""Tensor layout information for externally-serialized tensors.
Attributes:
scalar_type: type of the elements in the tensor.
sizes: size of each dim in the tensor.
dim_order: specifies the order the dimensions are laid out in memory,
from outer to inner.
"""
scalar_type: ScalarType
sizes: List[int]
dim_order: List[int]
@dataclass
class TensorEntry:
"""Represents a single tensor in `DataPayload`, specifying its location
and metadata.
Attributes:
buffer_index: The index inside `DataPayload.buffers` that this
TensorEntry refers to.
layout: Metadata about the tensor.
"""
buffer_index: int
layout: TensorLayout
@dataclass
class DataEntry:
"""Represents a single blob in `DataPayload`, specifying its location
and metadata.
Attributes:
buffer_index: The index inside `DataPayload.buffers` that this
DataEntry refers to.
alignment: The alignment of the data.
"""
buffer_index: int
alignment: int
@dataclass
class DataPayload:
"""Contains the data and metadata required for serialization.
Having an index-based arrangement instead of embedding the buffers in
TensorEntry allows the caller to deduplicate buffers and point multiple
fully qualified names (FQNs) to the same entry.
Attributes:
buffers: a sequence of tensor buffers.
fqn_to_tensor: a map from fully qualified names to serializable tensors.
key_to_data: a map from unique keys to serializable opaque data.
"""
buffers: Sequence[bytes]
fqn_to_tensor: Dict[str, TensorEntry]
key_to_data: Dict[str, DataEntry]
class DataSerializer(ABC):
"""Serializes and deserializes FQN-tagged tensor data.
This base class enables serialization into different formats. See
executorch/extension/flat_tensor/ for an example.
"""
@abstractmethod
def serialize(
self,
data: DataPayload,
) -> Cord:
"""
Serializes a list of tensors emitted by ExecuTorch into a binary blob.
Args:
data: the tensor buffers and tensor layout information required for
serialization.
Returns:
A binary blob that contains the serialized data.
"""
raise NotImplementedError("serialize_data")
@abstractmethod
def deserialize(self, blob: Cord) -> DataPayload:
"""
Deserializes a blob into a list of tensors. Reverses the effect of
serialize.
Args:
blob: A binary blob that contains the serialized data.
Returns:
DataPayload: tensor buffers and tensor layout information
deserialized from `blob`.
"""
raise NotImplementedError("deserialize_data")