You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+1
Original file line number
Diff line number
Diff line change
@@ -98,6 +98,7 @@ To learn more about how to contribute, see the contributor guide [here](https://
98
98
*[🎥 Scaling inference on CPU with TorchServe](https://www.youtube.com/watch?v=066_Jd6cwZg)
99
99
*[🎥 TorchServe C++ backend](https://www.youtube.com/watch?v=OSmGGDpaesc)
100
100
*[Grokking Intel CPU PyTorch performance from first principles: a TorchServe case study](https://pytorch.org/tutorials/intermediate/torchserve_with_ipex.html)
101
+
*[Grokking Intel CPU PyTorch performance from first principles( Part 2): a TorchServe case study](https://pytorch.org/tutorials/intermediate/torchserve_with_ipex_2.html)
101
102
*[Case Study: Amazon Ads Uses PyTorch and AWS Inferentia to Scale Models for Ads Processing](https://pytorch.org/blog/amazon-ads-case-study/)
102
103
*[Optimize your inference jobs using dynamic batch inference with TorchServe on Amazon SageMaker](https://aws.amazon.com/blogs/machine-learning/optimize-your-inference-jobs-using-dynamic-batch-inference-with-torchserve-on-amazon-sagemaker/)
103
104
*[Using AI to bring children's drawings to life](https://ai.facebook.com/blog/using-ai-to-bring-childrens-drawings-to-life/)
Copy file name to clipboardExpand all lines: docs/index.md
+56-9
Original file line number
Diff line number
Diff line change
@@ -1,8 +1,24 @@
1
1
# TorchServe
2
2
3
-
TorchServe is a performant, flexible and easy to use tool for serving PyTorch eager mode and torschripted models.
3
+
TorchServe is a performant, flexible and easy to use tool for serving PyTorch models in production.
4
4
5
-
## Basic Features
5
+
6
+
## ⚡ Why TorchServe
7
+
*[Model Management API](https://github.com/pytorch/serve/blob/master/docs/management_api.md): multi model management with optimized worker to model allocation
8
+
*[Inference API](https://github.com/pytorch/serve/blob/master/docs/inference_api.md): REST and gRPC support for batched inference
9
+
*[TorchServe Workflows](https://github.com/pytorch/serve/blob/master/examples/Workflows/README.md): deploy complex DAGs with multiple interdependent models
* Export your model for optimized inference. Torchscript out of the box, [ORT and ONNX](https://github.com/pytorch/serve/blob/master/docs/performance_guide.md), [IPEX](https://github.com/pytorch/serve/tree/master/examples/intel_extension_for_pytorch), [TensorRT](https://github.com/pytorch/serve/blob/master/docs/performance_guide.md), [FasterTransformer](https://github.com/pytorch/serve/tree/master/examples/FasterTransformer_HuggingFace_Bert)
17
+
*[Performance Guide](https://github.com/pytorch/serve/blob/master/docs/performance_guide.md): builtin support to optimize, benchmark and profile PyTorch and TorchServe performance
18
+
*[Expressive handlers](https://github.com/pytorch/serve/blob/master/CONTRIBUTING.md): An expressive handler architecture that makes it trivial to support inferencing for your usecase with [many supported out of the box](https://github.com/pytorch/serve/tree/master/ts/torch_handler)
19
+
*[Metrics API](https://github.com/pytorch/serve/blob/master/docs/metrics.md): out of box support for system level metrics with [Prometheus exports](https://github.com/pytorch/serve/tree/master/examples/custom_metrics), custom metrics and PyTorch profiler support
20
+
21
+
## 🤔 How does TorchServe work
6
22
7
23
*[Serving Quick Start](https://github.com/pytorch/serve/blob/master/README.md#serve-a-model) - Basic server usage tutorial
8
24
*[Model Archive Quick Start](https://github.com/pytorch/serve/tree/master/model-archiver#creating-a-model-archive) - Tutorial that shows you how to package a model archive file.
@@ -29,14 +45,19 @@ TorchServe is a performant, flexible and easy to use tool for serving PyTorch ea
29
45
*[Object Detector](https://github.com/pytorch/serve/blob/master/ts/torch_handler/object_detector.py) - This handler takes an image and returns list of detected classes and bounding boxes respectively
30
46
*[Image Segmenter](https://github.com/pytorch/serve/blob/master/ts/torch_handler/image_segmenter.py)- This handler takes an image and returns output shape as [CL H W], CL - number of classes, H - height and W - width
31
47
32
-
## Examples
48
+
## 🏆 Highlighted Examples
49
+
50
+
*[🤗 HuggingFace Transformers](https://github.com/pytorch/serve/blob/master/examples/Huggingface_Transformers) with a [Better Transformer Integration](https://github.com/pytorch/serve/blob/master/examples/Huggingface_Transformers#Speed-up-inference-with-Better-Transformer)
*[MultiModal models with MMF](https://github.com/pytorch/serve/tree/master/examples/MMF-activity-recognition) combining text, audio and video
53
+
*[Dual Neural Machine Translation](https://github.com/pytorch/serve/blob/master/examples/Workflows/nmt_transformers_pipeline) for a complex workflow DAG
*[Model Zoo](https://github.com/pytorch/serve/blob/master/docs/model_zoo.md) - List of pre-trained model archives ready to be served for inference with TorchServe.
58
+
59
+
For [more examples](https://github.com/pytorch/serve/blob/master/examples/README.md)
33
60
34
-
*[HuggingFace Language Model](https://github.com/pytorch/serve/blob/master/examples/Huggingface_Transformers/Transformer_handler_generalized.py) - This handler takes an input sentence and can return sequence classifications, token classifications or Q&A answers
35
-
*[Multi Modal Framework](https://github.com/pytorch/serve/blob/master/examples/MMF-activity-recognition/handler.py) - Build and deploy a classifier that combines text, audio and video input data
*[Model Zoo](model_zoo.md) - List of pre-trained model archives ready to be served for inference with TorchServe.
38
-
*[Examples](https://github.com/pytorch/serve/tree/master/examples) - Many examples of how to package and deploy models with TorchServe
39
-
*[Workflow Examples](https://github.com/pytorch/serve/tree/master/examples/Workflows) - Examples of how to compose models in a workflow with TorchServe
40
61
41
62
## Advanced Features
42
63
@@ -50,3 +71,29 @@ TorchServe is a performant, flexible and easy to use tool for serving PyTorch ea
50
71
*[mlflow-torchserve](https://github.com/mlflow/mlflow-torchserve) - Deploy mlflow pipeline models into TorchServe
51
72
*[Kubeflow pipelines](https://github.com/kubeflow/pipelines/tree/master/samples/contrib/pytorch-samples) - Kubeflow pipelines and Google Vertex AI Managed pipelines
52
73
*[NVIDIA MPS](mps.md) - Use NVIDIA MPS to optimize multi-worker deployment on a single GPU
*[Walmart Search: Serving Models at a Scale on TorchServe](https://medium.com/walmartglobaltech/search-model-serving-using-pytorch-and-torchserve-6caf9d1c5f4d)
78
+
*[🎥 Scaling inference on CPU with TorchServe](https://www.youtube.com/watch?v=066_Jd6cwZg)
79
+
*[🎥 TorchServe C++ backend](https://www.youtube.com/watch?v=OSmGGDpaesc)
80
+
*[Grokking Intel CPU PyTorch performance from first principles: a TorchServe case study](https://pytorch.org/tutorials/intermediate/torchserve_with_ipex.html)
81
+
*[Grokking Intel CPU PyTorch performance from first principles( Part 2): a TorchServe case study](https://pytorch.org/tutorials/intermediate/torchserve_with_ipex_2.html)
82
+
*[Case Study: Amazon Ads Uses PyTorch and AWS Inferentia to Scale Models for Ads Processing](https://pytorch.org/blog/amazon-ads-case-study/)
83
+
*[Optimize your inference jobs using dynamic batch inference with TorchServe on Amazon SageMaker](https://aws.amazon.com/blogs/machine-learning/optimize-your-inference-jobs-using-dynamic-batch-inference-with-torchserve-on-amazon-sagemaker/)
84
+
*[Using AI to bring children's drawings to life](https://ai.facebook.com/blog/using-ai-to-bring-childrens-drawings-to-life/)
85
+
*[🎥 Model Serving in PyTorch](https://www.youtube.com/watch?v=2A17ZtycsPw)
86
+
*[Evolution of Cresta's machine learning architecture: Migration to AWS and PyTorch](https://aws.amazon.com/blogs/machine-learning/evolution-of-crestas-machine-learning-architecture-migration-to-aws-and-pytorch/)
87
+
*[🎥 Explain Like I’m 5: TorchServe](https://www.youtube.com/watch?v=NEdZbkfHQCk)
88
+
*[🎥 How to Serve PyTorch Models with TorchServe](https://www.youtube.com/watch?v=XlO7iQMV3Ik)
89
+
*[How to deploy PyTorch models on Vertex AI](https://cloud.google.com/blog/topics/developers-practitioners/pytorch-google-cloud-how-deploy-pytorch-models-vertex-ai)
90
+
*[Quantitative Comparison of Serving Platforms](https://biano-ai.github.io/research/2021/08/16/quantitative-comparison-of-serving-platforms-for-neural-networks.html)
91
+
*[Efficient Serverless deployment of PyTorch models on Azure](https://medium.com/pytorch/efficient-serverless-deployment-of-pytorch-models-on-azure-dc9c2b6bfee7)
92
+
*[Deploy PyTorch models with TorchServe in Azure Machine Learning online endpoints](https://techcommunity.microsoft.com/t5/ai-machine-learning-blog/deploy-pytorch-models-with-torchserve-in-azure-machine-learning/ba-p/2466459)
93
+
*[Dynaboard moving beyond accuracy to holistic model evaluation in NLP](https://ai.facebook.com/blog/dynaboard-moving-beyond-accuracy-to-holistic-model-evaluation-in-nlp/)
94
+
*[A MLOps Tale about operationalising MLFlow and PyTorch](https://medium.com/mlops-community/engineering-lab-1-team-1-a-mlops-tale-about-operationalising-mlflow-and-pytorch-62193b55dc19)
95
+
*[Operationalize, Scale and Infuse Trust in AI Models using KFServing](https://blog.kubeflow.org/release/official/2021/03/08/kfserving-0.5.html)
96
+
*[How Wadhwani AI Uses PyTorch To Empower Cotton Farmers](https://medium.com/pytorch/how-wadhwani-ai-uses-pytorch-to-empower-cotton-farmers-14397f4c9f2b)
*[Dynabench aims to make AI models more robust through distributed human workers](https://venturebeat.com/2020/09/24/facebooks-dynabench-aims-to-make-ai-models-more-robust-through-distributed-human-workers/)
0 commit comments