Skip to content

Commit 044bbc1

Browse files
agunapalmsaroufim
andauthored
Updates to TorchServe page on pytorch.org (#2243)
* Updates to TorchServe page on pytorch.org --------- Co-authored-by: Mark Saroufim <[email protected]>
1 parent fa95a66 commit 044bbc1

File tree

2 files changed

+57
-9
lines changed

2 files changed

+57
-9
lines changed

README.md

+1
Original file line numberDiff line numberDiff line change
@@ -98,6 +98,7 @@ To learn more about how to contribute, see the contributor guide [here](https://
9898
* [🎥 Scaling inference on CPU with TorchServe](https://www.youtube.com/watch?v=066_Jd6cwZg)
9999
* [🎥 TorchServe C++ backend](https://www.youtube.com/watch?v=OSmGGDpaesc)
100100
* [Grokking Intel CPU PyTorch performance from first principles: a TorchServe case study](https://pytorch.org/tutorials/intermediate/torchserve_with_ipex.html)
101+
* [Grokking Intel CPU PyTorch performance from first principles( Part 2): a TorchServe case study](https://pytorch.org/tutorials/intermediate/torchserve_with_ipex_2.html)
101102
* [Case Study: Amazon Ads Uses PyTorch and AWS Inferentia to Scale Models for Ads Processing](https://pytorch.org/blog/amazon-ads-case-study/)
102103
* [Optimize your inference jobs using dynamic batch inference with TorchServe on Amazon SageMaker](https://aws.amazon.com/blogs/machine-learning/optimize-your-inference-jobs-using-dynamic-batch-inference-with-torchserve-on-amazon-sagemaker/)
103104
* [Using AI to bring children's drawings to life](https://ai.facebook.com/blog/using-ai-to-bring-childrens-drawings-to-life/)

docs/index.md

+56-9
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,24 @@
11
# TorchServe
22

3-
TorchServe is a performant, flexible and easy to use tool for serving PyTorch eager mode and torschripted models.
3+
TorchServe is a performant, flexible and easy to use tool for serving PyTorch models in production.
44

5-
## Basic Features
5+
6+
## ⚡ Why TorchServe
7+
* [Model Management API](https://github.com/pytorch/serve/blob/master/docs/management_api.md): multi model management with optimized worker to model allocation
8+
* [Inference API](https://github.com/pytorch/serve/blob/master/docs/inference_api.md): REST and gRPC support for batched inference
9+
* [TorchServe Workflows](https://github.com/pytorch/serve/blob/master/examples/Workflows/README.md): deploy complex DAGs with multiple interdependent models
10+
* Default way to serve PyTorch models in
11+
* [Kubeflow](https://v0-5.kubeflow.org/docs/components/pytorchserving/)
12+
* [MLflow](https://github.com/mlflow/mlflow-torchserve)
13+
* [Sagemaker](https://aws.amazon.com/blogs/machine-learning/serving-pytorch-models-in-production-with-the-amazon-sagemaker-native-torchserve-integration/)
14+
* [Kserve](https://kserve.github.io/website/0.8/modelserving/v1beta1/torchserve/): Supports both v1 and v2 API
15+
* [Vertex AI](https://cloud.google.com/blog/topics/developers-practitioners/pytorch-google-cloud-how-deploy-pytorch-models-vertex-ai)
16+
* Export your model for optimized inference. Torchscript out of the box, [ORT and ONNX](https://github.com/pytorch/serve/blob/master/docs/performance_guide.md), [IPEX](https://github.com/pytorch/serve/tree/master/examples/intel_extension_for_pytorch), [TensorRT](https://github.com/pytorch/serve/blob/master/docs/performance_guide.md), [FasterTransformer](https://github.com/pytorch/serve/tree/master/examples/FasterTransformer_HuggingFace_Bert)
17+
* [Performance Guide](https://github.com/pytorch/serve/blob/master/docs/performance_guide.md): builtin support to optimize, benchmark and profile PyTorch and TorchServe performance
18+
* [Expressive handlers](https://github.com/pytorch/serve/blob/master/CONTRIBUTING.md): An expressive handler architecture that makes it trivial to support inferencing for your usecase with [many supported out of the box](https://github.com/pytorch/serve/tree/master/ts/torch_handler)
19+
* [Metrics API](https://github.com/pytorch/serve/blob/master/docs/metrics.md): out of box support for system level metrics with [Prometheus exports](https://github.com/pytorch/serve/tree/master/examples/custom_metrics), custom metrics and PyTorch profiler support
20+
21+
## 🤔 How does TorchServe work
622

723
* [Serving Quick Start](https://github.com/pytorch/serve/blob/master/README.md#serve-a-model) - Basic server usage tutorial
824
* [Model Archive Quick Start](https://github.com/pytorch/serve/tree/master/model-archiver#creating-a-model-archive) - Tutorial that shows you how to package a model archive file.
@@ -29,14 +45,19 @@ TorchServe is a performant, flexible and easy to use tool for serving PyTorch ea
2945
* [Object Detector](https://github.com/pytorch/serve/blob/master/ts/torch_handler/object_detector.py) - This handler takes an image and returns list of detected classes and bounding boxes respectively
3046
* [Image Segmenter](https://github.com/pytorch/serve/blob/master/ts/torch_handler/image_segmenter.py)- This handler takes an image and returns output shape as [CL H W], CL - number of classes, H - height and W - width
3147

32-
## Examples
48+
## 🏆 Highlighted Examples
49+
50+
* [🤗 HuggingFace Transformers](https://github.com/pytorch/serve/blob/master/examples/Huggingface_Transformers) with a [Better Transformer Integration](https://github.com/pytorch/serve/blob/master/examples/Huggingface_Transformers#Speed-up-inference-with-Better-Transformer)
51+
* [Model parallel inference](https://github.com/pytorch/serve/blob/master/examples/Huggingface_Transformers#model-parallelism)
52+
* [MultiModal models with MMF](https://github.com/pytorch/serve/tree/master/examples/MMF-activity-recognition) combining text, audio and video
53+
* [Dual Neural Machine Translation](https://github.com/pytorch/serve/blob/master/examples/Workflows/nmt_transformers_pipeline) for a complex workflow DAG
54+
* [TorchServe Integrations](https://github.com/pytorch/serve/blob/master/examples/README.md#torchserve-integrations)
55+
* [TorchServe Internals](https://github.com/pytorch/serve/blob/master/examples/README.md#torchserve-internals)
56+
* [TorchServe UseCases](https://github.com/pytorch/serve/blob/master/examples/README.md#usecases)
57+
* [Model Zoo](https://github.com/pytorch/serve/blob/master/docs/model_zoo.md) - List of pre-trained model archives ready to be served for inference with TorchServe.
58+
59+
For [more examples](https://github.com/pytorch/serve/blob/master/examples/README.md)
3360

34-
* [HuggingFace Language Model](https://github.com/pytorch/serve/blob/master/examples/Huggingface_Transformers/Transformer_handler_generalized.py) - This handler takes an input sentence and can return sequence classifications, token classifications or Q&A answers
35-
* [Multi Modal Framework](https://github.com/pytorch/serve/blob/master/examples/MMF-activity-recognition/handler.py) - Build and deploy a classifier that combines text, audio and video input data
36-
* [Dual Translation Workflow](https://github.com/pytorch/serve/tree/master/examples/Workflows/nmt_transformers_pipeline) -
37-
* [Model Zoo](model_zoo.md) - List of pre-trained model archives ready to be served for inference with TorchServe.
38-
* [Examples](https://github.com/pytorch/serve/tree/master/examples) - Many examples of how to package and deploy models with TorchServe
39-
* [Workflow Examples](https://github.com/pytorch/serve/tree/master/examples/Workflows) - Examples of how to compose models in a workflow with TorchServe
4061

4162
## Advanced Features
4263

@@ -50,3 +71,29 @@ TorchServe is a performant, flexible and easy to use tool for serving PyTorch ea
5071
* [mlflow-torchserve](https://github.com/mlflow/mlflow-torchserve) - Deploy mlflow pipeline models into TorchServe
5172
* [Kubeflow pipelines](https://github.com/kubeflow/pipelines/tree/master/samples/contrib/pytorch-samples) - Kubeflow pipelines and Google Vertex AI Managed pipelines
5273
* [NVIDIA MPS](mps.md) - Use NVIDIA MPS to optimize multi-worker deployment on a single GPU
74+
75+
## 📰 News
76+
* [Torchserve Performance Tuning, Animated Drawings Case-Study](https://pytorch.org/blog/torchserve-performance-tuning/)
77+
* [Walmart Search: Serving Models at a Scale on TorchServe](https://medium.com/walmartglobaltech/search-model-serving-using-pytorch-and-torchserve-6caf9d1c5f4d)
78+
* [🎥 Scaling inference on CPU with TorchServe](https://www.youtube.com/watch?v=066_Jd6cwZg)
79+
* [🎥 TorchServe C++ backend](https://www.youtube.com/watch?v=OSmGGDpaesc)
80+
* [Grokking Intel CPU PyTorch performance from first principles: a TorchServe case study](https://pytorch.org/tutorials/intermediate/torchserve_with_ipex.html)
81+
* [Grokking Intel CPU PyTorch performance from first principles( Part 2): a TorchServe case study](https://pytorch.org/tutorials/intermediate/torchserve_with_ipex_2.html)
82+
* [Case Study: Amazon Ads Uses PyTorch and AWS Inferentia to Scale Models for Ads Processing](https://pytorch.org/blog/amazon-ads-case-study/)
83+
* [Optimize your inference jobs using dynamic batch inference with TorchServe on Amazon SageMaker](https://aws.amazon.com/blogs/machine-learning/optimize-your-inference-jobs-using-dynamic-batch-inference-with-torchserve-on-amazon-sagemaker/)
84+
* [Using AI to bring children's drawings to life](https://ai.facebook.com/blog/using-ai-to-bring-childrens-drawings-to-life/)
85+
* [🎥 Model Serving in PyTorch](https://www.youtube.com/watch?v=2A17ZtycsPw)
86+
* [Evolution of Cresta's machine learning architecture: Migration to AWS and PyTorch](https://aws.amazon.com/blogs/machine-learning/evolution-of-crestas-machine-learning-architecture-migration-to-aws-and-pytorch/)
87+
* [🎥 Explain Like I’m 5: TorchServe](https://www.youtube.com/watch?v=NEdZbkfHQCk)
88+
* [🎥 How to Serve PyTorch Models with TorchServe](https://www.youtube.com/watch?v=XlO7iQMV3Ik)
89+
* [How to deploy PyTorch models on Vertex AI](https://cloud.google.com/blog/topics/developers-practitioners/pytorch-google-cloud-how-deploy-pytorch-models-vertex-ai)
90+
* [Quantitative Comparison of Serving Platforms](https://biano-ai.github.io/research/2021/08/16/quantitative-comparison-of-serving-platforms-for-neural-networks.html)
91+
* [Efficient Serverless deployment of PyTorch models on Azure](https://medium.com/pytorch/efficient-serverless-deployment-of-pytorch-models-on-azure-dc9c2b6bfee7)
92+
* [Deploy PyTorch models with TorchServe in Azure Machine Learning online endpoints](https://techcommunity.microsoft.com/t5/ai-machine-learning-blog/deploy-pytorch-models-with-torchserve-in-azure-machine-learning/ba-p/2466459)
93+
* [Dynaboard moving beyond accuracy to holistic model evaluation in NLP](https://ai.facebook.com/blog/dynaboard-moving-beyond-accuracy-to-holistic-model-evaluation-in-nlp/)
94+
* [A MLOps Tale about operationalising MLFlow and PyTorch](https://medium.com/mlops-community/engineering-lab-1-team-1-a-mlops-tale-about-operationalising-mlflow-and-pytorch-62193b55dc19)
95+
* [Operationalize, Scale and Infuse Trust in AI Models using KFServing](https://blog.kubeflow.org/release/official/2021/03/08/kfserving-0.5.html)
96+
* [How Wadhwani AI Uses PyTorch To Empower Cotton Farmers](https://medium.com/pytorch/how-wadhwani-ai-uses-pytorch-to-empower-cotton-farmers-14397f4c9f2b)
97+
* [TorchServe Streamlit Integration](https://cceyda.github.io/blog/huggingface/torchserve/streamlit/ner/2020/10/09/huggingface_streamlit_serve.html)
98+
* [Dynabench aims to make AI models more robust through distributed human workers](https://venturebeat.com/2020/09/24/facebooks-dynabench-aims-to-make-ai-models-more-robust-through-distributed-human-workers/)
99+
* [Announcing TorchServe](https://aws.amazon.com/blogs/aws/announcing-torchserve-an-open-source-model-server-for-pytorch/)

0 commit comments

Comments
 (0)