|
159 | 159 | },
|
160 | 160 | {
|
161 | 161 | "cell_type": "code",
|
162 |
| - "execution_count": null, |
| 162 | + "execution_count": 1, |
163 | 163 | "id": "dfcd4b59",
|
164 | 164 | "metadata": {},
|
| 165 | + "outputs": [ |
| 166 | + { |
| 167 | + "name": "stdout", |
| 168 | + "output_type": "stream", |
| 169 | + "text": [ |
| 170 | + "Array 1: [1, 3, 5, 7, 9]\n", |
| 171 | + "Array 2: [2, 3, 5, 8, 10]\n", |
| 172 | + "Union: [1, 2, 3, 5, 7, 8, 9, 10]\n", |
| 173 | + "Mean: 5.625\n", |
| 174 | + "Median: 6.0\n" |
| 175 | + ] |
| 176 | + } |
| 177 | + ], |
| 178 | + "source": [ |
| 179 | + "import numpy as np\n", |
| 180 | + "\n", |
| 181 | + "# Step 1: Define two arrays\n", |
| 182 | + "array1 = [1, 3, 5, 7, 9]\n", |
| 183 | + "array2 = [2, 3, 5, 8, 10]\n", |
| 184 | + "\n", |
| 185 | + "# Step 2: Get the union (remove duplicates)\n", |
| 186 | + "union_array = list(set(array1 + array2))\n", |
| 187 | + "union_array.sort()\n", |
| 188 | + "\n", |
| 189 | + "# Step 3: Calculate mean and median\n", |
| 190 | + "mean_val = np.mean(union_array)\n", |
| 191 | + "median_val = np.median(union_array)\n", |
| 192 | + "\n", |
| 193 | + "# Step 4: Print results\n", |
| 194 | + "print(\"Array 1:\", array1)\n", |
| 195 | + "print(\"Array 2:\", array2)\n", |
| 196 | + "print(\"Union:\", union_array)\n", |
| 197 | + "print(\"Mean:\", mean_val)\n", |
| 198 | + "print(\"Median:\", median_val)\n" |
| 199 | + ] |
| 200 | + }, |
| 201 | + { |
| 202 | + "cell_type": "code", |
| 203 | + "execution_count": null, |
| 204 | + "id": "ae81dca2", |
| 205 | + "metadata": {}, |
165 | 206 | "outputs": [],
|
166 | 207 | "source": []
|
167 | 208 | }
|
|
182 | 223 | "name": "python",
|
183 | 224 | "nbconvert_exporter": "python",
|
184 | 225 | "pygments_lexer": "ipython3",
|
185 |
| - "version": "3.12.4" |
| 226 | + "version": "3.13.2" |
186 | 227 | }
|
187 | 228 | },
|
188 | 229 | "nbformat": 4,
|
|
0 commit comments