Skip to content

Commit 85ecc6b

Browse files
committed
add py
1 parent 8f3e90b commit 85ecc6b

File tree

1 file changed

+113
-0
lines changed

1 file changed

+113
-0
lines changed

exportingfile.py

+113
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,113 @@
1+
# %% [markdown]
2+
# ##NUMPY
3+
#
4+
# numpy aims to provide an array object that is upto 50 x faster than traditional lists.
5+
# Numpy arrays are stored at one continous place in memory unlike lists so processes can access and manipulate them very efficiently.
6+
7+
# %%
8+
import numpy as np;
9+
a = np.array([1,2,22,3])
10+
11+
# %%
12+
for i in range (len(a)):
13+
print(i*7)
14+
15+
# %%
16+
import numpy as np;
17+
# Create a 2D array
18+
matrix = np.array([[1, 2], [3, 4]])
19+
print("2D Array:\n", matrix)
20+
21+
# Accessing elements
22+
print("Element at row 0, column 1:", matrix[0, 1]) # Output: 2
23+
a = np.array([10, 20, 30])
24+
b = np.array([1, 2, 3])
25+
26+
print("Addition:", a + b) # [11 22 33]
27+
print("Multiplication:", a * b) # [10 40 90]
28+
print("Mean of a:", np.mean(a)) # 20.0
29+
30+
31+
32+
# %%
33+
import numpy as np;
34+
# Create a 3x3 matrix with random values
35+
rand_matrix = np.random.rand(3, 3)
36+
print("Random Matrix:\n", rand_matrix)
37+
38+
# Reshape a flat array to 2D
39+
flat = np.arange(9)
40+
reshaped = flat.reshape(3, 3)
41+
print("Reshaped Array:\n", reshaped)
42+
43+
44+
# %%
45+
import numpy as np;
46+
arr = np.array([5, 10, 15, 20, 25])
47+
filtered = arr[arr > 15]
48+
print("Filtered (greater than 15):", filtered) # [20 25]
49+
50+
51+
# %%
52+
import numpy as ss;
53+
arr1 = ss.array([2,3,4,5,5]);
54+
for i in range (len(arr1)):
55+
if i==1 :
56+
print(arr1[i])
57+
58+
59+
# %%
60+
import numpy as np
61+
62+
# Step 1: Define two arrays
63+
array1 = [1, 3, 5, 7, 9]
64+
array2 = [2, 3, 5, 8, 10]
65+
66+
# Step 2: Get the union (remove duplicates)
67+
union_array = list(set(array1 + array2))
68+
union_array.sort()
69+
70+
# Step 3: Calculate mean and median
71+
mean_val = np.mean(union_array)
72+
median_val = np.median(union_array)
73+
74+
# Step 4: Print results
75+
print("Array 1:", array1)
76+
print("Array 2:", array2)
77+
print("Union:", union_array)
78+
print("Mean:", mean_val)
79+
print("Median:", median_val)
80+
81+
82+
# %%
83+
from math import isqrt
84+
import numpy as np;
85+
86+
# Arrays
87+
array1 = [2, 3, 4]
88+
array2 = [1, 2, 3]
89+
90+
# Union and sort
91+
union_array = sorted(set(array1 + array2))
92+
93+
print("Star Patterns:\n")
94+
95+
# Function to print a star block of given rows and cols
96+
def print_block(rows, cols):
97+
for _ in range(rows):
98+
print("*" * cols)
99+
print()
100+
101+
# Generate all rectangle patterns for each number
102+
for num in union_array:
103+
print(f"Patterns for {num} stars:")
104+
for rows in range(1, num + 1):
105+
if num % rows == 0:
106+
cols = num // rows
107+
print_block(rows, cols)
108+
109+
110+
# %%
111+
112+
113+

0 commit comments

Comments
 (0)