-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolving_engine.py
executable file
·299 lines (238 loc) · 10.7 KB
/
solving_engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
""" Implementation of the backward fixpoint algorithm for safety games. """
"""
Copyright (c) 2014-2015, Leander Tentrup, Saarland University <[email protected]>
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
"""
import pycudd
CUDD_REORDER_SAME = 0
CUDD_REORDER_RANDOM = 2
CUDD_REORDER_SIFT = 4
CUDD_REORDER_SIFT_CONVERGE = 5
CUDD_REORDER_LAZY_SIFT = 20
class BDDSolver(object):
def __init__(self, aag, remove_latch_copies=True, lazy_transition_function=False, use_automatic_reordering=True):
self.aag = aag
# Initialize CUDD
self.mgr = pycudd.DdManager()
self.mgr.SetDefault()
if use_automatic_reordering:
self.mgr.AutodynEnable(CUDD_REORDER_LAZY_SIFT)
# Helper data structures
self.varcount = 0
self.varmapping = {} # var(num) => mgr index
self.primedmapping = {} # var(num) => mgr index
self.reversemapping = {} # index => var(num)
self.current = []
self.primed = []
self.exiscube = None # cube containing existential variables
self.univcube = None # cube containing universal variables
self.buildcache = {} # node(num) => node(bdd)
self.replacement_vector = None
# Remove latches that just copy the last input?
self.remove_latch_copies = remove_latch_copies
if self.remove_latch_copies:
self.latch_mapping = {}
for latch in self.aag.latches:
var = self.aag.latches[latch]
if var in self.aag.inputs + self.aag.controllable:
self.latch_mapping[latch] = var
self.lazy_transition_function = lazy_transition_function
if self.lazy_transition_function:
self.transition_function = {}
self.latch_vars = self.aag.latch_vars
else:
# micro optimization, make fake error latch the latch that is processed first
self.latch_vars = self.aag.latch_vars[-1:] + self.aag.latch_vars[0:-1]
def isRealizable(self):
transition_function = self.getTransitionFunction()
initial_states = self.getInitialStates()
self.finalize()
safe_states = self.getSafeStates()
zero_assignment = self.IntArrayFromList([0]*self.varcount)[0]
fixpoint = None
i = 0
while safe_states != fixpoint:
i += 1
print("Step {}".format(i))
fixpoint = safe_states
safe_states &= self.preSystem(safe_states, transition_function)
# check if safe states reachable from initial
# can evaluate on zero assignemnt as safe_states contains only latches
if not bool(safe_states.Eval(zero_assignment)):
return False
return True
def getSafeStates(self):
# returns BDD representing the safe states
return ~self.getVariable(self.aag.error_latch)
def getSafeOut(self):
# returns BDD representing the safe output
assert len(self.aag.outputs) == 1
return ~self.buildTransitionFunction(self.aag.outputs[0])
def getStates(self, bdd):
if self.lazy_transition_function:
bdd = bdd.VectorCompose(self.replacement_vector)
# existential abstraction
bdd = bdd.ExistAbstract(self.exiscube)
# universal abstraction
bdd = bdd.UnivAbstract(self.univcube)
return bdd
def getInitialStates(self):
# returns BDD representing the initial states
initial = self.mgr.One()
for latch in [self.getVariable(v) for v in self.latch_vars]:
initial = initial & ~latch
return initial
def getTransitionFunction(self):
# returns BDD representing the transition function
formula = []
for latch in self.latch_vars:
self.getVariable(latch)
if not self.lazy_transition_function:
# if latch copies the value of an input/controllable, do not include them in the transition function
if self.remove_latch_copies and latch in self.latch_mapping:
self.buildTransitionFunction(self.aag.latches[latch])
continue
if not self.lazy_transition_function:
primed = self.mgr.ReadVars(self.primedmapping[latch])
formula.append(primed.Xnor(self.buildTransitionFunction(self.aag.latches[latch])))
else:
self.transition_function[latch] = self.buildTransitionFunction(self.aag.latches[latch])
if not formula:
return self.mgr.One()
while len(formula) > 1:
a = formula.pop(0)
b = formula.pop(0)
formula.append(a & b)
return formula[0]
def finalize(self):
if not self.lazy_transition_function:
# Set the variable Map (mapping between primed and unprimed)
size = len(self.latch_vars)
current_array = pycudd.DdArray(size)
primed_array = pycudd.DdArray(size)
for latch in self.latch_vars:
current_array.Push(self.mgr.ReadVars(self.varmapping[latch]))
# optimize the copy latches: instead of mapping them to their primed variants, we map them to the variable which they should copy
if self.remove_latch_copies and latch in self.latch_mapping:
primed_array.Push(self.mgr.ReadVars(self.varmapping[self.latch_mapping[latch]]))
else:
primed_array.Push(self.mgr.ReadVars(self.primedmapping[latch]))
self.mgr.SetVarMap(current_array, primed_array, size)
else:
replacements = []
for i in range(self.varcount):
assert i in self.reversemapping
var = self.reversemapping[i]
if var in self.transition_function:
replacements.append(self.transition_function[var])
else:
replacements.append(self.mgr.ReadVars(i))
assert len(replacements) == self.varcount
self.replacement_vector, size = self.DdArrayFromList(replacements)
assert size == len(replacements)
# build the existential and universal cubes
# get controllable inputs and latches
existential = self.getIndicesFromVariables(self.aag.controllable, self.varmapping)
if not self.lazy_transition_function:
existential.extend(self.getIndicesFromVariables(self.latch_vars, self.primedmapping))
# build index cube
array, size = self.IntArrayFromList(existential)
self.exiscube = self.mgr.IndicesToCube(array, size)
# input cube
self.univcube = self.cubeFromVariables(self.aag.inputs, self.varmapping)
# remove build cache
del self.buildcache
def getVariable(self, var):
assert var % 2 == 0
if var in self.varmapping:
return self.mgr.ReadVars(self.varmapping[var])
else:
# create current state variable
bdd_var = self.mgr.NewVar()
self.varmapping[var] = self.varcount
self.reversemapping[self.varcount] = var
self.current.append(bdd_var)
self.varcount += 1
if var in self.aag.inputs:
self.mgr.SetPiVar(self.varcount-1)
self.mgr.SetPsVar(self.varcount-1)
if var in self.latch_vars and not self.lazy_transition_function:
# create primed next state variable
primed_var = self.mgr.NewVar()
self.primedmapping[var] = self.varcount
self.primed.append(primed_var)
self.varcount += 1
self.mgr.SetPairIndex(self.varcount-2, self.varcount-1)
self.mgr.SetNsVar(self.varcount-1)
return bdd_var
def buildTransitionFunction(self, var):
negated = False
if var % 2 == 1:
negated = True
var -= 1
formula = None
if var in self.buildcache:
formula = self.buildcache[var]
elif var in self.aag.and_gates:
lhs = self.buildTransitionFunction(self.aag.and_gates[var][0])
rhs = self.buildTransitionFunction(self.aag.and_gates[var][1])
formula = lhs & rhs
elif var in self.aag.inputs + self.aag.controllable + self.aag.latch_vars:
formula = self.getVariable(var)
elif var == 0:
formula = self.mgr.Zero()
else:
assert False
if not var in self.buildcache:
self.buildcache[var] = formula
if negated:
return ~formula
else:
return formula
def preSystem(self, safe_states, transition_function):
if not self.lazy_transition_function:
# prime latches
next_safe = safe_states.VarMap()
# combinde with transition function
bdd = next_safe.AndAbstract(transition_function, self.exiscube)
#bdd = next_safe & transition_function
#bdd = bdd.ExistAbstract(self.exiscube)
else:
next_safe = safe_states
bdd = safe_states.VectorCompose(self.replacement_vector)
bdd = bdd.ExistAbstract(self.exiscube)
# abstracting inputs
bdd = bdd.UnivAbstract(self.univcube)
return bdd
def IntArrayFromList(self, index_list):
size = len(index_list)
array = pycudd.IntArray(size)
for i in range(size):
array[i] = index_list[i]
return array, size
def DdArrayFromList(self, index_list):
size = len(index_list)
array = pycudd.DdArray(size)
for i in range(size):
array[i] = index_list[i]
return array, size
def getIndicesFromVariables(self, variables, mapping):
result = []
for var in variables:
if var in mapping:
i = mapping[var]
result.append(i)
return result
def cubeFromVariables(self, variables, mapping):
indices = self.getIndicesFromVariables(variables, mapping)
array, size = self.IntArrayFromList(indices)
return self.mgr.IndicesToCube(array, size)