-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlstm2.py
151 lines (123 loc) · 4.7 KB
/
lstm2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
"""
Usage:
lstm_text_generation.py <DIR>
Options:
<DIR> Directory containing parsed subtitles (e.g., data/lacollectioneuse.txt)
"""
from __future__ import print_function
from keras.models import Sequential, model_from_json
from keras.optimizers import Adagrad
from keras.layers.core import Dense, Activation, Dropout
from keras.layers.recurrent import LSTM
# from keras.datasets.data_utils import get_file
from keras.utils.data_utils import get_file
from os import path, symlink
import numpy as np
import random, sys
import re
from glob import glob
from docopt import docopt
args = docopt(__doc__)
'''
Example script to generate text from Nietzsche's writings.
At least 20 epochs are required before the generated text
starts sounding coherent.
It is recommended to run this script on GPU, as recurrent
networks are quite computationally intensive.
If you try this script on new data, make sure your corpus
has at least ~100k characters. ~1M is better.
'''
_text = ''
for fname in glob(path.join(args["<DIR>"], '*.txt')):
print("Reading file: %s" % fname)
fh = open(fname, 'ro')
_text += fh.read().decode('utf-8').lower()
fh.close()
print('corpus length:', len(_text))
text = []
for w in re.finditer(r"(\w+)", _text, re.MULTILINE | re.DOTALL | re.UNICODE):
text.append(w.group(1))
chars = set(text)
print('total chars:', len(chars))
char_indices = dict((c, i) for i, c in enumerate(chars))
indices_char = dict((i, c) for i, c in enumerate(chars))
# cut the text in semi-redundant sequences of maxlen characters
maxlen = 20
step = 3
sentences = []
next_chars = []
for i in range(0, len(text) - maxlen, step):
sentences.append(text[i : i + maxlen])
next_chars.append(text[i + maxlen])
print('nb sequences:', len(sentences))
print('Vectorization...')
X = np.zeros((len(sentences), maxlen, len(chars)), dtype=np.bool)
y = np.zeros((len(sentences), len(chars)), dtype=np.bool)
for i, sentence in enumerate(sentences):
for t, char in enumerate(sentence):
X[i, t, char_indices[char]] = 1
y[i, char_indices[next_chars[i]]] = 1
# build the model: 2 stacked LSTM
try:
print('Loading model...')
fh = open('keras-manos.model.json', 'rb')
model = model_from_json(fh.read())
fh.close()
except Exception as error:
print(error)
print('Build model...')
model = Sequential()
model.add(LSTM(512, input_shape=(maxlen, len(chars)), activation='sigmoid', return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(512, activation='sigmoid', return_sequences=False))
model.add(Dropout(0.2))
model.add(Dense(len(chars)))
model.add(Activation('softmax'))
# adagrad = Adagrad(lr=0.01, epsilon=1e-6, clipnorm=1.)
# model.compile(loss='binary_crossentropy', optimizer=adagrad)
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
fh = open('keras-manos.model.json', 'wb')
fh.write(model.to_json())
fh.close()
# helper function to sample an index from a probability array
def sample(a, temperature=1.0):
a = np.log(a) / temperature
dist = np.exp(a)/np.sum(np.exp(a))
choices = range(len(a))
return np.random.choice(choices, p=dist)
# a = np.log(a)/temperature
# a = np.exp(a)/np.sum(np.exp(a))
# return np.argmax(np.random.multinomial(1,a,1))
# Load previous weights
if path.isfile('keras-manos.weights.latest.h5'):
model.load_weights('keras-manos.weights.latest.h5')
# train the model, output generated text after each iteration
for iteration in range(1, 3):
print()
print('-' * 50)
print('Iteration', iteration)
model.fit(X, y, batch_size=128, epochs=1)
print(text)
start_index = random.randint(0, len(text) - maxlen - 1)
for diversity in [0.2, 0.5, 1.0, 1.2]:
print()
print('----- diversity:', diversity)
generated = ''
sentence = text[start_index : start_index + maxlen]
generated += " ".join(sentence).encode('utf-8')
print('----- Generating with seed: "' + " ".join(sentence).encode('utf-8') + '"')
sys.stdout.write(generated)
for _ in range(400):
x = np.zeros((1, maxlen, len(chars)))
for t, char in enumerate(sentence):
x[0, t, char_indices[char]] = 1.
preds = model.predict(x, verbose=0)[0]
next_index = sample(preds, diversity)
next_char = indices_char[next_index]
# generated += next_char
# sentence = sentence[1:] + next_char
sys.stdout.write(' ' + next_char.encode('utf-8'))
sys.stdout.flush()
print()
model.save_weights('keras-manos.weights.iter-%d.h5' % iteration)
symlink('keras-manos.weights.iter-%d.h5' % iteration, 'keras-manos.weights.latest.h5')