|
| 1 | +# Interpretation of function rules |
| 2 | + |
| 3 | +## Purpose |
| 4 | + |
| 5 | +This document |
| 6 | + |
| 7 | +1. describes how function rules are currently interpreted in Kore, |
| 8 | +1. exposes some problems with the current approach, and |
| 9 | +1. explains how function rules will be interpreted in Kore in the future to solve these problems. |
| 10 | + |
| 11 | +## Notation |
| 12 | + |
| 13 | +`Xᵢ` and `Yᵢ` refer to element variables. |
| 14 | +`{X}` and `{Y}` refer to all variables in the respective family of element variables. |
| 15 | +`fun(...)` is a function symbol. |
| 16 | +`φ` are arbitrary patterns appearing as the arguments of a function rule. |
| 17 | +`ψ` are arbitrary patterns appearing on the right-hand side of function rules. |
| 18 | +`Pre` and `Post` are respectively pre- and post-condition patterns. |
| 19 | + |
| 20 | +## Background |
| 21 | + |
| 22 | +This section will briefly describe how function rules are interpreted in Kore, |
| 23 | +before we continue in the next section to expose some problems with this interpretation. |
| 24 | +Consider a K function `fun` described by a family of rules, |
| 25 | + |
| 26 | +```.k |
| 27 | +rule fun(φ₁ᵢ({Y}), φ₂ᵢ({Y}), ...) => ψᵢ({Y}) requires Preᵢ({Y}) ensures Postᵢ({Y}) |
| 28 | +``` |
| 29 | + |
| 30 | +Each rule is interpreted in Kore as an axiom, |
| 31 | + |
| 32 | +```.kore |
| 33 | +axiom \implies(Preᵢ({Y}), (fun(φ₁ᵢ({Y}), φ₂ᵢ({Y}), ...) = ψᵢ({Y})) ∧ Postᵢ({Y})). |
| 34 | +``` |
| 35 | + |
| 36 | +## Problems |
| 37 | + |
| 38 | +### Partial heads |
| 39 | + |
| 40 | +See also: [kframework/kore#1146](https://github.com/kframework/kore/issues/1146) |
| 41 | + |
| 42 | +Rules with partial heads are potentially unsound. |
| 43 | +Consider the family of rules |
| 44 | + |
| 45 | +```.k |
| 46 | +rule sizeMap(_ |-> _ M:Map) = 1 +Int sizeMap(M) |
| 47 | +rule sizeMap(_ |-> _) = 1 |
| 48 | +rule sizeMap(.Map) = 0 |
| 49 | +``` |
| 50 | + |
| 51 | +producing axioms |
| 52 | + |
| 53 | +```.kore |
| 54 | +axiom sizeMap(concatMap(elementMap(_1, _2), M:Map)) = +Int(1, sizeMap(M)) |
| 55 | +axiom sizeMap(elementMap(_, _)) = 1 |
| 56 | +axiom sizeMap(.Map) = 0. |
| 57 | +``` |
| 58 | + |
| 59 | +Note that the first rule has a partial head; |
| 60 | +we can instantiate it at `M = elementMap(_1, _2)` to prove |
| 61 | + |
| 62 | +```.kore |
| 63 | +sizeMap(concatMap(elementMap(_1, _2), elementMap(_1, _2))) = +Int(1, sizeMap(elementMap(_1, _2))) |
| 64 | +sizeMap(\bottom) = +Int(1, sizeMap(elementMap(_1, _2))) |
| 65 | +sizeMap(\bottom) = +Int(1, 1) |
| 66 | +\bottom = 2. |
| 67 | +``` |
| 68 | + |
| 69 | +### Or patterns |
| 70 | + |
| 71 | +See also: [kframework/kore#1245](https://github.com/kframework/kore/issues/1245) |
| 72 | + |
| 73 | +Consider this family of rules defining function `fun`, |
| 74 | + |
| 75 | +```.k |
| 76 | +rule fun(A) => C |
| 77 | +rule fun(B) => C |
| 78 | +``` |
| 79 | + |
| 80 | +which is interpreted in Kore as two axioms, |
| 81 | + |
| 82 | +```.kore |
| 83 | +axiom \implies(\top, (fun(A) = C) ∧ \top) |
| 84 | +axiom \implies(\top, (fun(B) = C) ∧ \top). |
| 85 | +``` |
| 86 | + |
| 87 | +The K language offers a shorthand notation, |
| 88 | + |
| 89 | +```.k |
| 90 | +rule fun(A #Or B) => C |
| 91 | +``` |
| 92 | + |
| 93 | +which is intended to be equivalent to the pair of rules above. |
| 94 | +Under the current interpretation, this rule produces an axiom, |
| 95 | + |
| 96 | +```.kore |
| 97 | +axiom \implies(\top, (fun(A ∨ B) = C) ∧ \top) |
| 98 | +``` |
| 99 | + |
| 100 | +which is **not** equivalent to the first interpretation. |
| 101 | +Specifically, the first interpretation is satisfied if and only if |
| 102 | +`fun(A) = C ∧ fun(B) = C`, |
| 103 | +but the second interpretation can be satisfied if |
| 104 | +`fun(A) = C ∧ fun(B) = \bottom` |
| 105 | +or if |
| 106 | +`fun(A) = \bottom ∧ fun(B) = C`. |
| 107 | +Therefore, the current interpretation of function rules is not faithful to the user's intent. |
| 108 | + |
| 109 | +### Priority |
| 110 | + |
| 111 | +The `priority` attribute is not properly supported. |
| 112 | +The `owise` attribute is supported, but its implementation is inefficient: |
| 113 | +work is duplicated by re-checking that the other rules in the family do not apply. |
| 114 | + |
| 115 | +## Solution |
| 116 | + |
| 117 | +The interpretation of simplification rules will not change, |
| 118 | +but the family of K rules defining `fun`, |
| 119 | + |
| 120 | +```.k |
| 121 | +rule fun(φ₁ᵢ({Y}), φ₂ᵢ({Y}), ...) => ψᵢ({Y}) requires Preᵢ({Y}) ensures Postᵢ({Y}) |
| 122 | +``` |
| 123 | + |
| 124 | +will be interpreted in Kore as |
| 125 | + |
| 126 | +```.kore |
| 127 | +axiom \implies(Preᵢ({Y}) ∧ Argsᵢ({X}, {Y}) ∧ Prioᵢ({X}), (fun(X₁, X₂, ...) = ψᵢ({Y})) ∧ Postᵢ({Y})) |
| 128 | +``` |
| 129 | + |
| 130 | +where |
| 131 | + |
| 132 | +```.kore |
| 133 | +Argsᵢ({X}, {Y}) = (X₁ ∈ φ₁ᵢ({Y})) ∧ (X₂ ∈ φ₂ᵢ({Y})) ∧ ... |
| 134 | +Prioᵢ({X}) = ∧ⱼ ¬ ∃ {Y}. Preⱼ({Y}) ∧ Argsⱼ({X}, {Y}) |
| 135 | + for all j that priority(rule j) < priority(rule i). |
| 136 | +``` |
| 137 | + |
| 138 | +The predicate `Argsᵢ` interprets the argument patterns `φ₁ᵢ` element-wise, |
| 139 | +matching the user's intent and (as we will see below) avoiding the problems described above. |
| 140 | +The predicate `Prioᵢ` encodes the `priority` attribute in the pre-condition of the rule, |
| 141 | +which is now possible only because we have moved argument matching into the `Argsᵢ` pre-condition. |
| 142 | + |
| 143 | +### Partial heads |
| 144 | + |
| 145 | +The troublesome example, |
| 146 | + |
| 147 | +```.k |
| 148 | +rule sizeMap(_ |-> _ M:Map) = 1 +Int sizeMap(M) |
| 149 | +``` |
| 150 | + |
| 151 | +is interpreted in Kore as |
| 152 | + |
| 153 | +```.kore |
| 154 | +axiom \implies(X ∈ concatMap(elementMap(_1, _2), M:Map), sizeMap(X) = +Int(1, sizeMap(M))). |
| 155 | +``` |
| 156 | + |
| 157 | +If `concatMap(_, _)` is undefined, |
| 158 | +then the pre-condition `X ∈ concatMap(_, _)` is not satisfied; |
| 159 | +therefore, the rule is sound. |
| 160 | + |
| 161 | +### Or patterns |
| 162 | + |
| 163 | +The example or-pattern rule, |
| 164 | + |
| 165 | +```.k |
| 166 | +rule fun(A #Or B) => C |
| 167 | +``` |
| 168 | + |
| 169 | +will be interpreted as |
| 170 | + |
| 171 | +```.kore |
| 172 | +axiom \implies(X ∈ (A ∨ B), fun(X) = C). |
| 173 | +``` |
| 174 | + |
| 175 | +The disjunction distributes over `_ ∈ _` |
| 176 | + |
| 177 | +```.kore |
| 178 | +X ∈ (A ∨ B) |
| 179 | += (X ∈ A) ∨ (X ∈ B) |
| 180 | +``` |
| 181 | + |
| 182 | +and over `\implies` |
| 183 | + |
| 184 | +```.kore |
| 185 | +\implies(X ∈ (A ∨ B), fun(X) = C) |
| 186 | += \implies(X ∈ A, fun(X) = C) ∧ \implies(X ∈ B, fun(X) = C) |
| 187 | +``` |
| 188 | + |
| 189 | +so that the original axiom is equivalent to two axioms, as intended: |
| 190 | + |
| 191 | +```.kore |
| 192 | +axiom \implies(X ∈ A, fun(X) = C) |
| 193 | +axiom \implies(X ∈ B, fun(X) = C). |
| 194 | +``` |
| 195 | + |
| 196 | +### Priority |
| 197 | + |
| 198 | +The `priority` and `owise` attributes are now encoded explicitly in the |
| 199 | +pre-condition of the axiom. |
| 200 | +Consider a function, |
| 201 | + |
| 202 | +```.k |
| 203 | +rule L:Int <= X:Int < _ => false requires notBool L <=Int X |
| 204 | +rule _ <= X:Int < U:Int => false requires notBool X <Int U [priority(51)] |
| 205 | +rule _ <= _ < _ => true [owise] |
| 206 | +``` |
| 207 | + |
| 208 | +which will be interpreted in Kore as axioms |
| 209 | + |
| 210 | +```.kore |
| 211 | +axiom |
| 212 | + \implies( |
| 213 | + \and( |
| 214 | + true = notBool(<=Int(L, X)), |
| 215 | + (X₁ ∈ L) ∧ (X₂ ∈ X) |
| 216 | + ), |
| 217 | + \and( |
| 218 | + _<=_<_(X₁, X₂, X₃) = false, |
| 219 | + \top |
| 220 | + ) |
| 221 | + ) |
| 222 | +axiom |
| 223 | + \implies( |
| 224 | + \and( |
| 225 | + true = notBool(<Int(X, U)), |
| 226 | + (X₂ ∈ X) ∧ (X₃ ∈ U), |
| 227 | + \not \exists L X. |
| 228 | + \and( |
| 229 | + true = notBool(<=Int(L, X)), |
| 230 | + (X₁ ∈ L) ∧ (X₂ ∈ X) |
| 231 | + ) |
| 232 | + ), |
| 233 | + \and( |
| 234 | + _<=_<_(X₁, X₂, X₃) = false, |
| 235 | + \top |
| 236 | + ) |
| 237 | + ) |
| 238 | +axiom |
| 239 | + \implies( |
| 240 | + \and( |
| 241 | + \top, |
| 242 | + \top, |
| 243 | + \and( |
| 244 | + \not \exists L X. |
| 245 | + \and( |
| 246 | + true = notBool(<=Int(L, X)), |
| 247 | + (X₁ ∈ L) ∧ (X₂ ∈ X) |
| 248 | + ), |
| 249 | + \not \exists X U. |
| 250 | + \and( |
| 251 | + true = notBool(<Int(X, U)), |
| 252 | + (X₂ ∈ X) ∧ (X₃ ∈ U) |
| 253 | + ) |
| 254 | + ) |
| 255 | + ), |
| 256 | + \and( |
| 257 | + _<=_<_(X₁, X₂, X₃) = true, |
| 258 | + \top |
| 259 | + ) |
| 260 | + ) |
| 261 | +``` |
0 commit comments