File tree 2 files changed +43
-0
lines changed
2 files changed +43
-0
lines changed Original file line number Diff line number Diff line change 22
22
- [ Tables] ( individual/table.md )
23
23
- [ Tasks] ( individual/task.md )
24
24
- [ Strikethrough] ( individual/strikethrough.md )
25
+ - [ MathJax] ( individual/mathjax.md )
25
26
- [ Mixed] ( individual/mixed.md )
26
27
- [ Languages] ( languages/README.md )
27
28
- [ Syntax Highlight] ( languages/highlight.md )
Original file line number Diff line number Diff line change
1
+ # MathJax
2
+
3
+ Fourier Transform
4
+
5
+ \\ [
6
+ \begin{aligned}
7
+ f(x) &= \int_ {-\infty}^{\infty}F(s)(-1)^{ 2xs}ds \\\\
8
+ F(s) &= \int_ {-\infty}^{\infty}f(x)(-1)^{-2xs}dx
9
+ \end{aligned}
10
+ \\ ]
11
+
12
+ The kernel can also be written as \\ (e^{2i\pi xs}\\ ) which is more frequently used in literature.
13
+
14
+ > Proof that \\ (e^{ix} = \cos x + i\sin x\\ ) a.k.a Euler's Formula:
15
+ >
16
+ > \\ (
17
+ \begin{aligned}
18
+ e^x &= \sum_ {n=0}^\infty \frac{x^n}{n!} \implies e^{ix} = \sum_ {n=0}^\infty \frac{(ix)^n}{n!} \\\\
19
+ \cos x &= \sum_ {m=0}^\infty \frac{(-1)^m x^{2m}}{(2m)!} = \sum_ {m=0}^\infty \frac{(ix)^{2m}}{(2m)!} \\\\
20
+ \sin x &= \sum_ {s=0}^\infty \frac{(-1)^s x^{2s+1}}{(2s+1)!} = \sum_ {s=0}^\infty \frac{(ix)^{2s+1}}{i(2s+1)!} \\\\
21
+ \cos x + i\sin x &= \sum_ {l=0}^\infty \frac{(ix)^{2l}}{(2l)!} + \sum_ {s=0}^\infty \frac{(ix)^{2s+1}}{(2s+1)!} = \sum_ {n=0}^\infty \frac{(ix)^{n}}{n!} \\\\
22
+ &= e^{ix}
23
+ \end{aligned}
24
+ \\ )
25
+ >
26
+
27
+
28
+ Pauli Matrices
29
+
30
+ \\ [
31
+ \begin{aligned}
32
+ \sigma_x &= \begin{pmatrix}
33
+ 1 & 0 \\\\ 0 & 1
34
+ \end{pmatrix} \\\\
35
+ \sigma_y &= \begin{pmatrix}
36
+ 0 & -i \\\\ i & 0
37
+ \end{pmatrix} \\\\
38
+ \sigma_z &= \begin{pmatrix}
39
+ 1 & 0 \\\\ 0 & -1
40
+ \end{pmatrix}
41
+ \end{aligned}
42
+ \\ ]
You can’t perform that action at this time.
0 commit comments