Skip to content

Commit 000c92c

Browse files
tgross35speedy-lex
andcommitted
float: Add tests for f16 conversions to and from decimal
Extend the existing tests for `f32` and `f64` with versions that include `f16`'s new printing and parsing implementations. Co-authored-by: Speedy_Lex <[email protected]>
1 parent c645a0b commit 000c92c

File tree

11 files changed

+511
-77
lines changed

11 files changed

+511
-77
lines changed

library/coretests/Cargo.toml

+9
Original file line numberDiff line numberDiff line change
@@ -26,3 +26,12 @@ test = true
2626
[dev-dependencies]
2727
rand = { version = "0.9.0", default-features = false }
2828
rand_xorshift = { version = "0.4.0", default-features = false }
29+
30+
[lints.rust.unexpected_cfgs]
31+
level = "warn"
32+
check-cfg = [
33+
'cfg(bootstrap)',
34+
# Internal features aren't marked known config by default, we use these to
35+
# gate tests.
36+
'cfg(target_has_reliable_f16)',
37+
]

library/coretests/tests/lib.rs

+2
Original file line numberDiff line numberDiff line change
@@ -12,6 +12,7 @@
1212
#![feature(async_iterator)]
1313
#![feature(bigint_helper_methods)]
1414
#![feature(bstr)]
15+
#![feature(cfg_target_has_reliable_f16_f128)]
1516
#![feature(char_max_len)]
1617
#![feature(clone_to_uninit)]
1718
#![feature(const_eval_select)]
@@ -29,6 +30,7 @@
2930
#![feature(exact_size_is_empty)]
3031
#![feature(extend_one)]
3132
#![feature(extern_types)]
33+
#![feature(f16)]
3234
#![feature(float_minimum_maximum)]
3335
#![feature(flt2dec)]
3436
#![feature(fmt_internals)]

library/coretests/tests/num/dec2flt/decimal.rs

+14
Original file line numberDiff line numberDiff line change
@@ -7,6 +7,20 @@ const FPATHS_F32: &[FPath<f32>] =
77
const FPATHS_F64: &[FPath<f64>] =
88
&[((0, 0, false, false), Some(0.0)), ((0, 0, false, false), Some(0.0))];
99

10+
// FIXME(f16_f128): enable on all targets once possible.
11+
#[test]
12+
#[cfg(target_has_reliable_f16)]
13+
fn check_fast_path_f16() {
14+
const FPATHS_F16: &[FPath<f16>] =
15+
&[((0, 0, false, false), Some(0.0)), ((0, 0, false, false), Some(0.0))];
16+
for ((exponent, mantissa, negative, many_digits), expected) in FPATHS_F16.iter().copied() {
17+
let dec = Decimal { exponent, mantissa, negative, many_digits };
18+
let actual = dec.try_fast_path::<f16>();
19+
20+
assert_eq!(actual, expected);
21+
}
22+
}
23+
1024
#[test]
1125
fn check_fast_path_f32() {
1226
for ((exponent, mantissa, negative, many_digits), expected) in FPATHS_F32.iter().copied() {

library/coretests/tests/num/dec2flt/float.rs

+39
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,23 @@
11
use core::num::dec2flt::float::RawFloat;
22

3+
// FIXME(f16_f128): enable on all targets once possible.
4+
#[test]
5+
#[cfg(target_has_reliable_f16)]
6+
fn test_f16_integer_decode() {
7+
assert_eq!(3.14159265359f16.integer_decode(), (1608, -9, 1));
8+
assert_eq!((-8573.5918555f16).integer_decode(), (1072, 3, -1));
9+
assert_eq!(2f16.powf(14.0).integer_decode(), (1 << 10, 4, 1));
10+
assert_eq!(0f16.integer_decode(), (0, -25, 1));
11+
assert_eq!((-0f16).integer_decode(), (0, -25, -1));
12+
assert_eq!(f16::INFINITY.integer_decode(), (1 << 10, 6, 1));
13+
assert_eq!(f16::NEG_INFINITY.integer_decode(), (1 << 10, 6, -1));
14+
15+
// Ignore the "sign" (quiet / signalling flag) of NAN.
16+
// It can vary between runtime operations and LLVM folding.
17+
let (nan_m, nan_p, _nan_s) = f16::NAN.integer_decode();
18+
assert_eq!((nan_m, nan_p), (1536, 6));
19+
}
20+
321
#[test]
422
fn test_f32_integer_decode() {
523
assert_eq!(3.14159265359f32.integer_decode(), (13176795, -22, 1));
@@ -34,6 +52,27 @@ fn test_f64_integer_decode() {
3452

3553
/* Sanity checks of computed magic numbers */
3654

55+
// FIXME(f16_f128): enable on all targets once possible.
56+
#[test]
57+
#[cfg(target_has_reliable_f16)]
58+
fn test_f16_consts() {
59+
assert_eq!(<f16 as RawFloat>::INFINITY, f16::INFINITY);
60+
assert_eq!(<f16 as RawFloat>::NEG_INFINITY, -f16::INFINITY);
61+
assert_eq!(<f16 as RawFloat>::NAN.to_bits(), f16::NAN.to_bits());
62+
assert_eq!(<f16 as RawFloat>::NEG_NAN.to_bits(), (-f16::NAN).to_bits());
63+
assert_eq!(<f16 as RawFloat>::SIG_BITS, 10);
64+
assert_eq!(<f16 as RawFloat>::MIN_EXPONENT_ROUND_TO_EVEN, -22);
65+
assert_eq!(<f16 as RawFloat>::MAX_EXPONENT_ROUND_TO_EVEN, 5);
66+
assert_eq!(<f16 as RawFloat>::MIN_EXPONENT_FAST_PATH, -4);
67+
assert_eq!(<f16 as RawFloat>::MAX_EXPONENT_FAST_PATH, 4);
68+
assert_eq!(<f16 as RawFloat>::MAX_EXPONENT_DISGUISED_FAST_PATH, 7);
69+
assert_eq!(<f16 as RawFloat>::EXP_MIN, -14);
70+
assert_eq!(<f16 as RawFloat>::EXP_SAT, 0x1f);
71+
assert_eq!(<f16 as RawFloat>::SMALLEST_POWER_OF_TEN, -27);
72+
assert_eq!(<f16 as RawFloat>::LARGEST_POWER_OF_TEN, 4);
73+
assert_eq!(<f16 as RawFloat>::MAX_MANTISSA_FAST_PATH, 2048);
74+
}
75+
3776
#[test]
3877
fn test_f32_consts() {
3978
assert_eq!(<f32 as RawFloat>::INFINITY, f32::INFINITY);
+102-31
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,12 @@
11
use core::num::dec2flt::float::RawFloat;
22
use core::num::dec2flt::lemire::compute_float;
33

4+
#[cfg(target_has_reliable_f16)]
5+
fn compute_float16(q: i64, w: u64) -> (i32, u64) {
6+
let fp = compute_float::<f16>(q, w);
7+
(fp.p_biased, fp.m)
8+
}
9+
410
fn compute_float32(q: i64, w: u64) -> (i32, u64) {
511
let fp = compute_float::<f32>(q, w);
612
(fp.p_biased, fp.m)
@@ -11,23 +17,73 @@ fn compute_float64(q: i64, w: u64) -> (i32, u64) {
1117
(fp.p_biased, fp.m)
1218
}
1319

20+
// FIXME(f16_f128): enable on all targets once possible.
21+
#[test]
22+
#[cfg(target_has_reliable_f16)]
23+
fn compute_float_f16_rounding() {
24+
// The maximum integer that cna be converted to a `f16` without lost precision.
25+
let val = 1 << 11;
26+
let scale = 10_u64.pow(10);
27+
28+
// These test near-halfway cases for half-precision floats.
29+
assert_eq!(compute_float16(0, val), (26, 0));
30+
assert_eq!(compute_float16(0, val + 1), (26, 0));
31+
assert_eq!(compute_float16(0, val + 2), (26, 1));
32+
assert_eq!(compute_float16(0, val + 3), (26, 2));
33+
assert_eq!(compute_float16(0, val + 4), (26, 2));
34+
35+
// For the next power up, the two nearest representable numbers are twice as far apart.
36+
let val2 = 1 << 12;
37+
assert_eq!(compute_float16(0, val2), (27, 0));
38+
assert_eq!(compute_float16(0, val2 + 2), (27, 0));
39+
assert_eq!(compute_float16(0, val2 + 4), (27, 1));
40+
assert_eq!(compute_float16(0, val2 + 6), (27, 2));
41+
assert_eq!(compute_float16(0, val2 + 8), (27, 2));
42+
43+
// These are examples of the above tests, with digits from the exponent shifted
44+
// to the mantissa.
45+
assert_eq!(compute_float16(-10, val * scale), (26, 0));
46+
assert_eq!(compute_float16(-10, (val + 1) * scale), (26, 0));
47+
assert_eq!(compute_float16(-10, (val + 2) * scale), (26, 1));
48+
// Let's check the lines to see if anything is different in table...
49+
assert_eq!(compute_float16(-10, (val + 3) * scale), (26, 2));
50+
assert_eq!(compute_float16(-10, (val + 4) * scale), (26, 2));
51+
52+
// Check the rounding point between infinity and the next representable number down
53+
assert_eq!(compute_float16(4, 6), (f16::INFINITE_POWER - 1, 851));
54+
assert_eq!(compute_float16(4, 7), (f16::INFINITE_POWER, 0)); // infinity
55+
assert_eq!(compute_float16(2, 655), (f16::INFINITE_POWER - 1, 1023));
56+
}
57+
1458
#[test]
1559
fn compute_float_f32_rounding() {
60+
// the maximum integer that cna be converted to a `f32` without lost precision.
61+
let val = 1 << 24;
62+
let scale = 10_u64.pow(10);
63+
1664
// These test near-halfway cases for single-precision floats.
17-
assert_eq!(compute_float32(0, 16777216), (151, 0));
18-
assert_eq!(compute_float32(0, 16777217), (151, 0));
19-
assert_eq!(compute_float32(0, 16777218), (151, 1));
20-
assert_eq!(compute_float32(0, 16777219), (151, 2));
21-
assert_eq!(compute_float32(0, 16777220), (151, 2));
22-
23-
// These are examples of the above tests, with
24-
// digits from the exponent shifted to the mantissa.
25-
assert_eq!(compute_float32(-10, 167772160000000000), (151, 0));
26-
assert_eq!(compute_float32(-10, 167772170000000000), (151, 0));
27-
assert_eq!(compute_float32(-10, 167772180000000000), (151, 1));
65+
assert_eq!(compute_float32(0, val), (151, 0));
66+
assert_eq!(compute_float32(0, val + 1), (151, 0));
67+
assert_eq!(compute_float32(0, val + 2), (151, 1));
68+
assert_eq!(compute_float32(0, val + 3), (151, 2));
69+
assert_eq!(compute_float32(0, val + 4), (151, 2));
70+
71+
// For the next power up, the two nearest representable numbers are twice as far apart.
72+
let val2 = 1 << 25;
73+
assert_eq!(compute_float32(0, val2), (152, 0));
74+
assert_eq!(compute_float32(0, val2 + 2), (152, 0));
75+
assert_eq!(compute_float32(0, val2 + 4), (152, 1));
76+
assert_eq!(compute_float32(0, val2 + 6), (152, 2));
77+
assert_eq!(compute_float32(0, val2 + 8), (152, 2));
78+
79+
// These are examples of the above tests, with digits from the exponent shifted
80+
// to the mantissa.
81+
assert_eq!(compute_float32(-10, val * scale), (151, 0));
82+
assert_eq!(compute_float32(-10, (val + 1) * scale), (151, 0));
83+
assert_eq!(compute_float32(-10, (val + 2) * scale), (151, 1));
2884
// Let's check the lines to see if anything is different in table...
29-
assert_eq!(compute_float32(-10, 167772190000000000), (151, 2));
30-
assert_eq!(compute_float32(-10, 167772200000000000), (151, 2));
85+
assert_eq!(compute_float32(-10, (val + 3) * scale), (151, 2));
86+
assert_eq!(compute_float32(-10, (val + 4) * scale), (151, 2));
3187

3288
// Check the rounding point between infinity and the next representable number down
3389
assert_eq!(compute_float32(38, 3), (f32::INFINITE_POWER - 1, 6402534));
@@ -37,23 +93,38 @@ fn compute_float_f32_rounding() {
3793

3894
#[test]
3995
fn compute_float_f64_rounding() {
96+
// The maximum integer that cna be converted to a `f64` without lost precision.
97+
let val = 1 << 53;
98+
let scale = 1000;
99+
40100
// These test near-halfway cases for double-precision floats.
41-
assert_eq!(compute_float64(0, 9007199254740992), (1076, 0));
42-
assert_eq!(compute_float64(0, 9007199254740993), (1076, 0));
43-
assert_eq!(compute_float64(0, 9007199254740994), (1076, 1));
44-
assert_eq!(compute_float64(0, 9007199254740995), (1076, 2));
45-
assert_eq!(compute_float64(0, 9007199254740996), (1076, 2));
46-
assert_eq!(compute_float64(0, 18014398509481984), (1077, 0));
47-
assert_eq!(compute_float64(0, 18014398509481986), (1077, 0));
48-
assert_eq!(compute_float64(0, 18014398509481988), (1077, 1));
49-
assert_eq!(compute_float64(0, 18014398509481990), (1077, 2));
50-
assert_eq!(compute_float64(0, 18014398509481992), (1077, 2));
51-
52-
// These are examples of the above tests, with
53-
// digits from the exponent shifted to the mantissa.
54-
assert_eq!(compute_float64(-3, 9007199254740992000), (1076, 0));
55-
assert_eq!(compute_float64(-3, 9007199254740993000), (1076, 0));
56-
assert_eq!(compute_float64(-3, 9007199254740994000), (1076, 1));
57-
assert_eq!(compute_float64(-3, 9007199254740995000), (1076, 2));
58-
assert_eq!(compute_float64(-3, 9007199254740996000), (1076, 2));
101+
assert_eq!(compute_float64(0, val), (1076, 0));
102+
assert_eq!(compute_float64(0, val + 1), (1076, 0));
103+
assert_eq!(compute_float64(0, val + 2), (1076, 1));
104+
assert_eq!(compute_float64(0, val + 3), (1076, 2));
105+
assert_eq!(compute_float64(0, val + 4), (1076, 2));
106+
107+
// For the next power up, the two nearest representable numbers are twice as far apart.
108+
let val2 = 1 << 54;
109+
assert_eq!(compute_float64(0, val2), (1077, 0));
110+
assert_eq!(compute_float64(0, val2 + 2), (1077, 0));
111+
assert_eq!(compute_float64(0, val2 + 4), (1077, 1));
112+
assert_eq!(compute_float64(0, val2 + 6), (1077, 2));
113+
assert_eq!(compute_float64(0, val2 + 8), (1077, 2));
114+
115+
// These are examples of the above tests, with digits from the exponent shifted
116+
// to the mantissa.
117+
assert_eq!(compute_float64(-3, val * scale), (1076, 0));
118+
assert_eq!(compute_float64(-3, (val + 1) * scale), (1076, 0));
119+
assert_eq!(compute_float64(-3, (val + 2) * scale), (1076, 1));
120+
assert_eq!(compute_float64(-3, (val + 3) * scale), (1076, 2));
121+
assert_eq!(compute_float64(-3, (val + 4) * scale), (1076, 2));
122+
123+
// Check the rounding point between infinity and the next representable number down
124+
assert_eq!(compute_float64(308, 1), (f64::INFINITE_POWER - 1, 506821272651936));
125+
assert_eq!(compute_float64(308, 2), (f64::INFINITE_POWER, 0)); // infinity
126+
assert_eq!(
127+
compute_float64(292, 17976931348623157),
128+
(f64::INFINITE_POWER - 1, 4503599627370495)
129+
);
59130
}

library/coretests/tests/num/dec2flt/mod.rs

+56-9
Original file line numberDiff line numberDiff line change
@@ -11,15 +11,23 @@ mod parse;
1111
// Requires a *polymorphic literal*, i.e., one that can serve as f64 as well as f32.
1212
macro_rules! test_literal {
1313
($x: expr) => {{
14+
#[cfg(target_has_reliable_f16)]
15+
let x16: f16 = $x;
1416
let x32: f32 = $x;
1517
let x64: f64 = $x;
1618
let inputs = &[stringify!($x).into(), format!("{:?}", x64), format!("{:e}", x64)];
19+
1720
for input in inputs {
18-
assert_eq!(input.parse(), Ok(x64));
19-
assert_eq!(input.parse(), Ok(x32));
21+
assert_eq!(input.parse(), Ok(x64), "failed f64 {input}");
22+
assert_eq!(input.parse(), Ok(x32), "failed f32 {input}");
23+
#[cfg(target_has_reliable_f16)]
24+
assert_eq!(input.parse(), Ok(x16), "failed f16 {input}");
25+
2026
let neg_input = format!("-{input}");
21-
assert_eq!(neg_input.parse(), Ok(-x64));
22-
assert_eq!(neg_input.parse(), Ok(-x32));
27+
assert_eq!(neg_input.parse(), Ok(-x64), "failed f64 {neg_input}");
28+
assert_eq!(neg_input.parse(), Ok(-x32), "failed f32 {neg_input}");
29+
#[cfg(target_has_reliable_f16)]
30+
assert_eq!(neg_input.parse(), Ok(-x16), "failed f16 {neg_input}");
2331
}
2432
}};
2533
}
@@ -84,48 +92,87 @@ fn fast_path_correct() {
8492
test_literal!(1.448997445238699);
8593
}
8694

95+
// FIXME(f16_f128): remove gates once tests work on all targets
96+
8797
#[test]
8898
fn lonely_dot() {
99+
#[cfg(target_has_reliable_f16)]
100+
assert!(".".parse::<f16>().is_err());
89101
assert!(".".parse::<f32>().is_err());
90102
assert!(".".parse::<f64>().is_err());
91103
}
92104

93105
#[test]
94106
fn exponentiated_dot() {
107+
#[cfg(target_has_reliable_f16)]
108+
assert!(".e0".parse::<f16>().is_err());
95109
assert!(".e0".parse::<f32>().is_err());
96110
assert!(".e0".parse::<f64>().is_err());
97111
}
98112

99113
#[test]
100114
fn lonely_sign() {
101-
assert!("+".parse::<f32>().is_err());
102-
assert!("-".parse::<f64>().is_err());
115+
#[cfg(target_has_reliable_f16)]
116+
assert!("+".parse::<f16>().is_err());
117+
assert!("-".parse::<f32>().is_err());
118+
assert!("+".parse::<f64>().is_err());
103119
}
104120

105121
#[test]
106122
fn whitespace() {
123+
#[cfg(target_has_reliable_f16)]
124+
assert!("1.0 ".parse::<f16>().is_err());
107125
assert!(" 1.0".parse::<f32>().is_err());
108126
assert!("1.0 ".parse::<f64>().is_err());
109127
}
110128

111129
#[test]
112130
fn nan() {
131+
#[cfg(target_has_reliable_f16)]
132+
{
133+
assert!("NaN".parse::<f16>().unwrap().is_nan());
134+
assert!("-NaN".parse::<f16>().unwrap().is_nan());
135+
}
136+
113137
assert!("NaN".parse::<f32>().unwrap().is_nan());
138+
assert!("-NaN".parse::<f32>().unwrap().is_nan());
139+
114140
assert!("NaN".parse::<f64>().unwrap().is_nan());
141+
assert!("-NaN".parse::<f64>().unwrap().is_nan());
115142
}
116143

117144
#[test]
118145
fn inf() {
119-
assert_eq!("inf".parse(), Ok(f64::INFINITY));
120-
assert_eq!("-inf".parse(), Ok(f64::NEG_INFINITY));
146+
#[cfg(target_has_reliable_f16)]
147+
{
148+
assert_eq!("inf".parse(), Ok(f16::INFINITY));
149+
assert_eq!("-inf".parse(), Ok(f16::NEG_INFINITY));
150+
}
151+
121152
assert_eq!("inf".parse(), Ok(f32::INFINITY));
122153
assert_eq!("-inf".parse(), Ok(f32::NEG_INFINITY));
154+
155+
assert_eq!("inf".parse(), Ok(f64::INFINITY));
156+
assert_eq!("-inf".parse(), Ok(f64::NEG_INFINITY));
123157
}
124158

125159
#[test]
126160
fn massive_exponent() {
161+
#[cfg(target_has_reliable_f16)]
162+
{
163+
let max = i16::MAX;
164+
assert_eq!(format!("1e{max}000").parse(), Ok(f16::INFINITY));
165+
assert_eq!(format!("1e-{max}000").parse(), Ok(0.0f16));
166+
assert_eq!(format!("1e{max}000").parse(), Ok(f16::INFINITY));
167+
}
168+
169+
let max = i32::MAX;
170+
assert_eq!(format!("1e{max}000").parse(), Ok(f32::INFINITY));
171+
assert_eq!(format!("1e-{max}000").parse(), Ok(0.0f32));
172+
assert_eq!(format!("1e{max}000").parse(), Ok(f32::INFINITY));
173+
127174
let max = i64::MAX;
128175
assert_eq!(format!("1e{max}000").parse(), Ok(f64::INFINITY));
129-
assert_eq!(format!("1e-{max}000").parse(), Ok(0.0));
176+
assert_eq!(format!("1e-{max}000").parse(), Ok(0.0f64));
130177
assert_eq!(format!("1e{max}000").parse(), Ok(f64::INFINITY));
131178
}

0 commit comments

Comments
 (0)