@@ -262,7 +262,41 @@ pub trait Lapack: Triangular_ + Tridiagonal_ {
262
262
/// `anorm` should be the 1-norm of the matrix `a`.
263
263
fn rcond ( l : MatrixLayout , a : & [ Self ] , anorm : Self :: Real ) -> Result < Self :: Real > ;
264
264
265
- /// Compute operator norm of a matrix
265
+ /// Compute norm of matrices
266
+ ///
267
+ /// For a $n \times m$ matrix
268
+ /// $$
269
+ /// A = \begin{pmatrix}
270
+ /// a_{11} & \cdots & a_{1m} \\\\
271
+ /// \vdots & \ddots & \vdots \\\\
272
+ /// a_{n1} & \cdots & a_{nm}
273
+ /// \end{pmatrix}
274
+ /// $$
275
+ /// LAPACK can compute three types of norms:
276
+ ///
277
+ /// - Operator norm based on 1-norm for its domain linear space:
278
+ /// $$
279
+ /// \Vert A \Vert_1 = \sup_{\Vert x \Vert_1 = 1} \Vert Ax \Vert_1
280
+ /// = \max_{1 \le j \le m } \sum_{i=1}^n |a_{ij}|
281
+ /// $$
282
+ /// where
283
+ /// $\Vert x\Vert_1 = \sum_{j=1}^m |x_j|$
284
+ /// is 1-norm for a vector $x$.
285
+ ///
286
+ /// - Operator norm based on $\infty$-norm for its domain linear space:
287
+ /// $$
288
+ /// \Vert A \Vert_\infty = \sup_{\Vert x \Vert_\infty = 1} \Vert Ax \Vert_\infty
289
+ /// = \max_{1 \le i \le n } \sum_{j=1}^m |a_{ij}|
290
+ /// $$
291
+ /// where
292
+ /// $\Vert x\Vert_\infty = \max_{j=1}^m |x_j|$
293
+ /// is $\infty$-norm for a vector $x$.
294
+ ///
295
+ /// - Frobenious norm
296
+ /// $$
297
+ /// \Vert A \Vert_F = \sqrt{\mathrm{Tr} \left(AA^\dagger\right)} = \sqrt{\sum_{i=1}^n \sum_{j=1}^m |a_{ij}|^2}
298
+ /// $$
299
+ ///
266
300
fn opnorm ( t : NormType , l : MatrixLayout , a : & [ Self ] ) -> Self :: Real ;
267
301
}
268
302
0 commit comments