-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAverageSmallBatchNN.py
65 lines (54 loc) · 1.69 KB
/
AverageSmallBatchNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import random, gym
from math import *
from sklearn.neural_network import MLPClassifier, MLPRegressor
from sklearn.svm import SVC
rewardSum = 0
num = 0
average = 0
X = []
y = []
agent = SVC(gamma=0.001, max_iter=10)
env = gym.make('CartPole-v0')
for i_episode in range(200):
observation = env.reset()
tempX = []
tempY = []
totalReward = 0
for t in range(250):
#Render
env.render()
#Action
if i_episode < 10:
action = env.action_space.sample()
else:
action = agent.predict([[float(observation[0]), float(observation[1]), float(observation[2]), float(observation[3])]])[0]
tempX.append([float(observation[0]), float(observation[1]), float(observation[2]), float(observation[3])])
if action == 1:
tempY.append(1)
else:
tempY.append(0)
#Observe
observation, reward, done, info = env.step(action)
totalReward += reward
if done:
#Update NN
print(totalReward)
rewardSum += totalReward
num += 1
average = (rewardSum + totalReward)/num
diff = totalReward-average
for weight in range(abs(int(diff))):
for newX in tempX:
X.append(newX)
for newY in tempY:
if diff >= 0:
y.append(newY)
else:
y.append(abs(newY-1))
#Forgetfullnes
for i in range(min(len(X), 10)):
X.pop(0)
y.pop(0)
agent = SVC(gamma=0.001, max_iter=10)
agent.fit(X, y)
break