Skip to content

Commit ba1bb2f

Browse files
committed
added new skills
1 parent e08fefe commit ba1bb2f

File tree

13 files changed

+814
-44
lines changed

13 files changed

+814
-44
lines changed
185 KB
Loading

content/posts/physics/percolation/index.md

+34-2
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ menu:
99
parent: physics
1010
weight: 9
1111
hero: images/lattice_illustration.png
12-
tags: ["Science", ""]
12+
tags: ["Science", "Physics", "Statistics"]
1313
categories: ["Physics"]
1414
---
1515
## Introduction
@@ -25,7 +25,37 @@ Percolation theory is important because it provides insights into the behavior o
2525
* **Network Theory**: Percolation theory is used to study the robustness and connectivity of networks, such as the internet or social networks. It helps in understanding how networks can be disrupted and how they can be made more resilient
2626
* **Geophysics**: In oil recovery, percolation theory models the flow of fluids through porous rocks, helping to optimize extraction processes
2727
* **Forest Fires**: Percolation models can simulate the spread of forest fires, helping in the development of strategies for fire prevention and control
28-
.
28+
29+
30+
## Mathematical and Physics Theory
31+
32+
Percolation theory can be studied using site percolation or bond percolation models. In site percolation, each site (or node) on a lattice is either occupied with probability $ p $ or empty with probability $ 1 - p $. In bond percolation, each bond (or edge) between sites is open with probability $ p $ or closed with probability $ 1 - p $.
33+
34+
### Step-by-Step Explanation:
35+
36+
1. **Define the Lattice**: Consider a 2D square lattice or a 3D cubic lattice. For simplicity, let's use a 2D square lattice.
37+
38+
2. **Assign Probabilities**: For each site (or bond), assign a probability $ p $ that it is occupied (or open).
39+
40+
3. **Cluster Formation**: Identify clusters of connected sites (or bonds). Two sites are in the same cluster if there is a path of occupied sites (or open bonds) connecting them.
41+
42+
4. **Critical Threshold $ p_c $**: Determine the critical probability $ p_c $ at which an infinite cluster first appears. For a 2D square lattice, it has been rigorously shown that $ p_c \approx 0.5927 $.
43+
44+
5. **Mathematical Formulation**: The percolation probability $ P(p) $ is the probability that a given site belongs to the infinite cluster. Near the critical threshold, this follows a power-law behavior:
45+
$$
46+
P(p) \sim (p - p_c)^\beta
47+
$$
48+
where $ \beta $ is a critical exponent and equal to $\frac{5}{36}$ for 2D squared lattice.
49+
50+
6. **Correlation Length $ \xi $**: The average size of finite clusters below $ p_c $ is characterized by the correlation length $ \xi $, which diverges as:
51+
$$
52+
\xi \sim |p - p_c|^{-\nu}
53+
$$
54+
where $ \nu $ is another critical exponent
55+
56+
7. **Conductivity and Other Properties**: In practical applications, properties like electrical conductivity in materials can be modeled by considering the effective medium theory or numerical simulations to calculate the likelihood of percolation and the size of clusters.
57+
58+
By analyzing these steps, percolation theory provides a comprehensive understanding of how macroscopic properties emerge from microscopic randomness, revealing universal behaviors that transcend specific systems.
2959

3060
## Python Simulation Code
3161

@@ -119,6 +149,7 @@ for i, p in enumerate(p_values):
119149
# Adjust spacing between subplots
120150
plt.subplots_adjust(wspace=0.1, hspace=0.1)
121151

152+
122153
# Show the plot
123154
plt.show()
124155
```
@@ -132,6 +163,7 @@ In further version, also a connected path from left to right can be considered.
132163

133164
## Conclusion
134165
The previous plot shows that with _p>0.58_ a percolation path starts to be observed. However, this is so not alwasy happening for stochastical reasons. Hence that plot is the result of several iteration to find the most interesting plot. With _p>0.60_ percolation happens more than 90% of the time.
166+
In general, this confirms the numerical value of $p_c$ that can be found in [literature](https://arxiv.org/abs/cond-mat/0005264) of 0.5927
135167

136168
In further articles we will explore some [python libraries](https://pypercolate.readthedocs.io/en/stable/) to develop a more advanced and practical example.
137169

data/en/sections/skills.yaml

+12-1
Original file line numberDiff line numberDiff line change
@@ -43,6 +43,17 @@ skills:
4343
# logo: /images/sections/skills/prometheus.png
4444
# summary: "Capable of setup, configure Prometheus metrics. Experienced with PromQL, AlertManager. Also, experienced with writing metric exporters."
4545
# url: "https://prometheus.io/"
46+
- name: Apache Cassandra DB
47+
logo: /images/sections/skills/cassandra.png
48+
summary: "Experience with NoSQL and distributed database"
49+
50+
- name: _Apache_ Spark
51+
logo:
52+
summary: Big Data Analytics and Processing. Used with Scala and Python.
53+
54+
- name: TCAD Sentaurus
55+
logo:
56+
summary: "Nanodevices design and electrical simulation (FinFET, GAAFET, NanoWires, InfraRed Pixels)"
4657

4758
- name: Linux
4859
logo: /images/sections/skills/linux.png
@@ -55,4 +66,4 @@ skills:
5566

5667
- name: C++
5768
logo: /images/sections/skills/c++.png
58-
summary: "Know basic C/C++ programming. Used often to accelerate python computational time"
69+
summary: "Know basic C/C++ programming. I used often to accelerate python computational time"

public/index.html

+49-1
Original file line numberDiff line numberDiff line change
@@ -821,6 +821,54 @@ <h5 class="card-title">Edge Computing</h5>
821821
<div class="card">
822822
<div class="card-head d-flex">
823823

824+
<h5 class="card-title">Cassandra DB</h5>
825+
826+
</div>
827+
<div class="card-body">
828+
<p class="card-text">Experience with NoSQL and distributed database</p>
829+
</div>
830+
</div>
831+
</a>
832+
</div>
833+
834+
835+
<div class="col-xs-12 col-sm-6 col-lg-4 pt-2">
836+
<a class="text-decoration-none" >
837+
<div class="card">
838+
<div class="card-head d-flex">
839+
840+
<h5 class="card-title">Spark</h5>
841+
842+
</div>
843+
<div class="card-body">
844+
<p class="card-text">Big Data Analytics and Processing. Used with Scala and Python.</p>
845+
</div>
846+
</div>
847+
</a>
848+
</div>
849+
850+
851+
<div class="col-xs-12 col-sm-6 col-lg-4 pt-2">
852+
<a class="text-decoration-none" >
853+
<div class="card">
854+
<div class="card-head d-flex">
855+
856+
<h5 class="card-title">TCAD Sentaurus</h5>
857+
858+
</div>
859+
<div class="card-body">
860+
<p class="card-text">Nanodevices design and electrical simulation (FinFET, GAAFET, NanoWires, InfraRed Pixels)</p>
861+
</div>
862+
</div>
863+
</a>
864+
</div>
865+
866+
867+
<div class="col-xs-12 col-sm-6 col-lg-4 pt-2">
868+
<a class="text-decoration-none" >
869+
<div class="card">
870+
<div class="card-head d-flex">
871+
824872

825873

826874

@@ -878,7 +926,7 @@ <h5 class="card-title">C&#43;&#43;</h5>
878926

879927
</div>
880928
<div class="card-body">
881-
<p class="card-text">Know basic C/C++ programming. Used often to accelerate python computational time</p>
929+
<p class="card-text">Know basic C/C++ programming. I used often to accelerate python computational time</p>
882930
</div>
883931
</div>
884932
</a>

public/index.json

+1-1
Large diffs are not rendered by default.

public/posts/index.html

+5-2
Original file line numberDiff line numberDiff line change
@@ -402,7 +402,10 @@ <h5 class="card-title">Percolation</h5>
402402
<li class="rounded"><a href="/tags/science/" class="btn btn-sm btn-info">Science</a></li>
403403

404404

405-
<li class="rounded"><a href="/tags/" class="btn btn-sm btn-info"></a></li>
405+
<li class="rounded"><a href="/tags/physics/" class="btn btn-sm btn-info">Physics</a></li>
406+
407+
408+
<li class="rounded"><a href="/tags/statistics/" class="btn btn-sm btn-info">Statistics</a></li>
406409

407410
</ul>
408411
</div>
@@ -412,7 +415,7 @@ <h5 class="card-title">Percolation</h5>
412415
<div class="card-footer">
413416
<span class="float-start">
414417
Saturday, June 8, 2024
415-
| 4 minutes </span>
418+
| 5 minutes </span>
416419
<a
417420
href="/posts/physics/percolation/"
418421
class="float-end btn btn-outline-info btn-sm">Read</a>

public/posts/physics/index.html

+5-2
Original file line numberDiff line numberDiff line change
@@ -360,7 +360,10 @@ <h5 class="card-title">Percolation</h5>
360360
<li class="rounded"><a href="/tags/science/" class="btn btn-sm btn-info">Science</a></li>
361361

362362

363-
<li class="rounded"><a href="/tags/" class="btn btn-sm btn-info"></a></li>
363+
<li class="rounded"><a href="/tags/physics/" class="btn btn-sm btn-info">Physics</a></li>
364+
365+
366+
<li class="rounded"><a href="/tags/statistics/" class="btn btn-sm btn-info">Statistics</a></li>
364367

365368
</ul>
366369
</div>
@@ -370,7 +373,7 @@ <h5 class="card-title">Percolation</h5>
370373
<div class="card-footer">
371374
<span class="float-start">
372375
Saturday, June 8, 2024
373-
| 4 minutes </span>
376+
| 5 minutes </span>
374377
<a
375378
href="/posts/physics/percolation/"
376379
class="float-end btn btn-outline-info btn-sm">Read</a>

public/posts/physics/percolation/index.html

+51-5
Original file line numberDiff line numberDiff line change
@@ -33,6 +33,8 @@
3333
<meta property="article:published_time" content="2024-06-08T08:06:25+06:00">
3434
<meta property="article:modified_time" content="2024-06-08T08:06:25+06:00">
3535
<meta property="article:tag" content="Science">
36+
<meta property="article:tag" content="Physics">
37+
<meta property="article:tag" content="Statistics">
3638

3739

3840
<meta name="twitter:card" content="summary">
@@ -351,7 +353,7 @@
351353
<div class="author-profile ms-auto align-self-lg-center">
352354
<img class="rounded-circle" src='/images/author/profile_hu8a567cefac8c1a165d433ac0796ac418_3088978_120x120_fit_q75_box.jpg' alt="Author Image">
353355
<h5 class="author-name">Stefano Giannini</h5>
354-
<p class="text-muted">Saturday, June 8, 2024 | 4 minutes</p>
356+
<p class="text-muted">Saturday, June 8, 2024 | 5 minutes</p>
355357
</div>
356358

357359

@@ -369,7 +371,10 @@ <h1>Percolation</h1>
369371
<li class="rounded"><a href="/tags/science/" class="btn btn-sm btn-info">Science</a></li>
370372

371373

372-
<li class="rounded"><a href="/tags/" class="btn btn-sm btn-info"></a></li>
374+
<li class="rounded"><a href="/tags/physics/" class="btn btn-sm btn-info">Physics</a></li>
375+
376+
377+
<li class="rounded"><a href="/tags/statistics/" class="btn btn-sm btn-info">Statistics</a></li>
373378

374379
</ul>
375380
</div>
@@ -385,9 +390,43 @@ <h2 id="why-is-percolation-important-useful-applications">Why is Percolation Imp
385390
<li><strong>Epidemiology</strong>: In the study of disease spread, percolation models can predict the outbreak and spread of epidemics. The percolation threshold can represent the critical point at which a disease becomes widespread in a population</li>
386391
<li><strong>Network Theory</strong>: Percolation theory is used to study the robustness and connectivity of networks, such as the internet or social networks. It helps in understanding how networks can be disrupted and how they can be made more resilient</li>
387392
<li><strong>Geophysics</strong>: In oil recovery, percolation theory models the flow of fluids through porous rocks, helping to optimize extraction processes</li>
388-
<li><strong>Forest Fires</strong>: Percolation models can simulate the spread of forest fires, helping in the development of strategies for fire prevention and control
389-
.</li>
393+
<li><strong>Forest Fires</strong>: Percolation models can simulate the spread of forest fires, helping in the development of strategies for fire prevention and control</li>
390394
</ul>
395+
<h2 id="mathematical-and-physics-theory">Mathematical and Physics Theory</h2>
396+
<p>Percolation theory can be studied using site percolation or bond percolation models. In site percolation, each site (or node) on a lattice is either occupied with probability $ p $ or empty with probability $ 1 - p $. In bond percolation, each bond (or edge) between sites is open with probability $ p $ or closed with probability $ 1 - p $.</p>
397+
<h3 id="step-by-step-explanation">Step-by-Step Explanation:</h3>
398+
<ol>
399+
<li>
400+
<p><strong>Define the Lattice</strong>: Consider a 2D square lattice or a 3D cubic lattice. For simplicity, let&rsquo;s use a 2D square lattice.</p>
401+
</li>
402+
<li>
403+
<p><strong>Assign Probabilities</strong>: For each site (or bond), assign a probability $ p $ that it is occupied (or open).</p>
404+
</li>
405+
<li>
406+
<p><strong>Cluster Formation</strong>: Identify clusters of connected sites (or bonds). Two sites are in the same cluster if there is a path of occupied sites (or open bonds) connecting them.</p>
407+
</li>
408+
<li>
409+
<p><strong>Critical Threshold $ p_c $</strong>: Determine the critical probability $ p_c $ at which an infinite cluster first appears. For a 2D square lattice, it has been rigorously shown that $ p_c \approx 0.5927 $.</p>
410+
</li>
411+
<li>
412+
<p><strong>Mathematical Formulation</strong>: The percolation probability $ P(p) $ is the probability that a given site belongs to the infinite cluster. Near the critical threshold, this follows a power-law behavior:
413+
$$
414+
P(p) \sim (p - p_c)^\beta
415+
$$
416+
where $ \beta $ is a critical exponent and equal to $\frac{5}{36}$ for 2D squared lattice.</p>
417+
</li>
418+
<li>
419+
<p><strong>Correlation Length $ \xi $</strong>: The average size of finite clusters below $ p_c $ is characterized by the correlation length $ \xi $, which diverges as:
420+
$$
421+
\xi \sim |p - p_c|^{-\nu}
422+
$$
423+
where $ \nu $ is another critical exponent</p>
424+
</li>
425+
<li>
426+
<p><strong>Conductivity and Other Properties</strong>: In practical applications, properties like electrical conductivity in materials can be modeled by considering the effective medium theory or numerical simulations to calculate the likelihood of percolation and the size of clusters.</p>
427+
</li>
428+
</ol>
429+
<p>By analyzing these steps, percolation theory provides a comprehensive understanding of how macroscopic properties emerge from microscopic randomness, revealing universal behaviors that transcend specific systems.</p>
391430
<h2 id="python-simulation-code">Python Simulation Code</h2>
392431
<p>Here is a simple example of a site percolation simulation on a square lattice in Python:</p>
393432
<div class="highlight"><pre tabindex="0" style="color:#f8f8f2;background-color:#272822;-moz-tab-size:4;-o-tab-size:4;tab-size:4;"><code class="language-python" data-lang="python"><span style="display:flex;"><span><span style="color:#75715e"># -*- coding: utf-8 -*-</span>
@@ -477,6 +516,7 @@ <h2 id="python-simulation-code">Python Simulation Code</h2>
477516
</span></span><span style="display:flex;"><span><span style="color:#75715e"># Adjust spacing between subplots</span>
478517
</span></span><span style="display:flex;"><span>plt<span style="color:#f92672">.</span>subplots_adjust(wspace<span style="color:#f92672">=</span><span style="color:#ae81ff">0.1</span>, hspace<span style="color:#f92672">=</span><span style="color:#ae81ff">0.1</span>)
479518
</span></span><span style="display:flex;"><span>
519+
</span></span><span style="display:flex;"><span>
480520
</span></span><span style="display:flex;"><span><span style="color:#75715e"># Show the plot</span>
481521
</span></span><span style="display:flex;"><span>plt<span style="color:#f92672">.</span>show()
482522
</span></span></code></pre></div><p>This code generates a square lattice of size <code>n</code> with site vacancy probability <code>p</code>, checks if the lattice percolates (i.e., if there is a connected path from the top to the bottom), and plots the lattice.</p>
@@ -495,7 +535,8 @@ <h3 id="results">Results</h3>
495535
>
496536

497537
<h2 id="conclusion">Conclusion</h2>
498-
<p>The previous plot shows that with <em>p&gt;0.58</em> a percolation path starts to be observed. However, this is so not alwasy happening for stochastical reasons. Hence that plot is the result of several iteration to find the most interesting plot. With <em>p&gt;0.60</em> percolation happens more than 90% of the time.</p>
538+
<p>The previous plot shows that with <em>p&gt;0.58</em> a percolation path starts to be observed. However, this is so not alwasy happening for stochastical reasons. Hence that plot is the result of several iteration to find the most interesting plot. With <em>p&gt;0.60</em> percolation happens more than 90% of the time.
539+
In general, this confirms the numerical value of $p_c$ that can be found in <a href="https://arxiv.org/abs/cond-mat/0005264" target="_blank" rel="noopener">literature</a> of 0.5927</p>
499540
<p>In further articles we will explore some <a href="https://pypercolate.readthedocs.io/en/stable/" target="_blank" rel="noopener">python libraries</a> to develop a more advanced and practical example.</p>
500541
<!-- ## GitHub Repositories
501542
@@ -648,6 +689,11 @@ <h5 class="text-center ps-3">Table of Contents</h5>
648689
<ul>
649690
<li><a href="#introduction">Introduction</a></li>
650691
<li><a href="#why-is-percolation-important-useful-applications">Why is Percolation Important? Useful Applications</a></li>
692+
<li><a href="#mathematical-and-physics-theory">Mathematical and Physics Theory</a>
693+
<ul>
694+
<li><a href="#step-by-step-explanation">Step-by-Step Explanation:</a></li>
695+
</ul>
696+
</li>
651697
<li><a href="#python-simulation-code">Python Simulation Code</a>
652698
<ul>
653699
<li><a href="#results">Results</a></li>

0 commit comments

Comments
 (0)