|
26 | 26 | <meta property="og:url" content="http://localhost:1313/notes/physics/electromagnetism/">
|
27 | 27 | <meta property="og:site_name" content="Stefano Giannini">
|
28 | 28 | <meta property="og:title" content="Electromagnetism">
|
29 |
| - <meta property="og:description" content="Maxwell Equation (Integral) Gauss’ Law: $$ \qquad \iint_{\partial \Omega} \mathbf{E} \cdot d\mathbf{S} = 4 \pi \iiint_{\Omega} \rho dV $$ |
30 |
| -Gauss’ Law for Magnetism $$ \qquad \iint_{\partial \Omega} \mathbf{B} \cdot d\mathbf{S} = 0 $$ "> |
| 29 | + <meta property="og:description" content="Maxwell Equation (Integral) Gauss’ Law: $$ \iint_{\partial \Omega} \mathbf{E} \cdot d\mathbf{S} = 4 \pi \iiint_{\Omega} \rho dV $$ |
| 30 | +Gauss’ Law for Magnetism: $$ \iint_{\partial \Omega} \mathbf{B} \cdot d\mathbf{S} = 0 $$ |
| 31 | +Maxwell-Faraday Equation: |
| 32 | +$$ \oint_{\partial \Omega} \mathbf{E} \cdot d\mathbf{l} = -\frac{d}{dt} \int_{\Sigma} \mathbf{B} \cdot d\mathbf{S} $$ |
| 33 | +Ampère’s circuital law: $$ \oint_{\partial \Omega} \mathbf{B} \cdot d\mathbf{l} = \mu_0 \left(\iint_{\Sigma} \mathbf{J} \cdot d\mathbf{S} + \epsilon_0 \frac{d}{dt} \iint_{\Sigma} \mathbf{E} \cdot d\mathbf{S}\right) $$"> |
31 | 34 | <meta property="og:locale" content="en">
|
32 | 35 | <meta property="og:type" content="article">
|
33 | 36 | <meta property="article:section" content="notes">
|
34 | 37 |
|
35 | 38 |
|
36 | 39 | <meta name="twitter:card" content="summary">
|
37 | 40 | <meta name="twitter:title" content="Electromagnetism">
|
38 |
| - <meta name="twitter:description" content="Maxwell Equation (Integral) Gauss’ Law: $$ \qquad \iint_{\partial \Omega} \mathbf{E} \cdot d\mathbf{S} = 4 \pi \iiint_{\Omega} \rho dV $$ |
39 |
| -Gauss’ Law for Magnetism $$ \qquad \iint_{\partial \Omega} \mathbf{B} \cdot d\mathbf{S} = 0 $$ "> |
| 41 | + <meta name="twitter:description" content="Maxwell Equation (Integral) Gauss’ Law: $$ \iint_{\partial \Omega} \mathbf{E} \cdot d\mathbf{S} = 4 \pi \iiint_{\Omega} \rho dV $$ |
| 42 | +Gauss’ Law for Magnetism: $$ \iint_{\partial \Omega} \mathbf{B} \cdot d\mathbf{S} = 0 $$ |
| 43 | +Maxwell-Faraday Equation: |
| 44 | +$$ \oint_{\partial \Omega} \mathbf{E} \cdot d\mathbf{l} = -\frac{d}{dt} \int_{\Sigma} \mathbf{B} \cdot d\mathbf{S} $$ |
| 45 | +Ampère’s circuital law: $$ \oint_{\partial \Omega} \mathbf{B} \cdot d\mathbf{l} = \mu_0 \left(\iint_{\Sigma} \mathbf{J} \cdot d\mathbf{S} + \epsilon_0 \frac{d}{dt} \iint_{\Sigma} \mathbf{E} \cdot d\mathbf{S}\right) $$"> |
40 | 46 |
|
41 | 47 |
|
42 | 48 |
|
|
325 | 331 | <section class="content-section" id="content-section">
|
326 | 332 | <div class="content container-fluid" id="content">
|
327 | 333 | <div class="container-fluid note-card-holder" id="note-card-holder">
|
328 |
| - <!-- A Sample Program --> |
| 334 | + <!-- A Sample Program --> |
329 | 335 | <div class="note-card ">
|
330 | 336 | <div class="item">
|
331 | 337 | <h5 class="note-title"><span>Maxwell Equation (Integral)</span></h5>
|
332 | 338 |
|
333 | 339 | <div class="card">
|
334 |
| - <div class="card-body"><ul> |
| 340 | + <div class="card-body"><ol> |
335 | 341 | <li><strong>Gauss’ Law</strong>:</li>
|
336 |
| -</ul> |
337 |
| -<p>$$ \qquad \iint_{\partial \Omega} \mathbf{E} \cdot d\mathbf{S} = 4 \pi \iiint_{\Omega} \rho dV $$</p> |
338 |
| -<ul> |
339 |
| -<li><strong>Gauss’ Law for Magnetism</strong> |
340 |
| -$$ \qquad \iint_{\partial \Omega} \mathbf{B} \cdot d\mathbf{S} = 0 $$</li> |
341 |
| -</ul></div> |
| 342 | +</ol> |
| 343 | +<p>$$ \iint_{\partial \Omega} \mathbf{E} \cdot d\mathbf{S} = 4 \pi \iiint_{\Omega} \rho dV $$</p> |
| 344 | +<ol start="2"> |
| 345 | +<li> |
| 346 | +<p><strong>Gauss’ Law for Magnetism</strong>: |
| 347 | +$$ \iint_{\partial \Omega} \mathbf{B} \cdot d\mathbf{S} = 0 $$</p> |
| 348 | +</li> |
| 349 | +<li> |
| 350 | +<p><strong>Maxwell-Faraday Equation</strong>:</p> |
| 351 | +</li> |
| 352 | +</ol> |
| 353 | +<p>$$ \oint_{\partial \Omega} \mathbf{E} \cdot d\mathbf{l} = -\frac{d}{dt} \int_{\Sigma} \mathbf{B} \cdot d\mathbf{S} $$</p> |
| 354 | +<ol start="4"> |
| 355 | +<li><strong>Ampère’s circuital law</strong>:</li> |
| 356 | +</ol> |
| 357 | +<p>$$ \oint_{\partial \Omega} \mathbf{B} \cdot d\mathbf{l} = \mu_0 \left(\iint_{\Sigma} \mathbf{J} \cdot d\mathbf{S} + \epsilon_0 \frac{d}{dt} \iint_{\Sigma} \mathbf{E} \cdot d\mathbf{S}\right) $$</p> |
| 358 | +</div> |
| 359 | + </div> |
| 360 | + |
| 361 | + </div> |
| 362 | +</div> |
| 363 | + |
| 364 | +<div class="note-card "> |
| 365 | + <div class="item"> |
| 366 | + <h5 class="note-title"><span>Maxwell Equation (Differential)</span></h5> |
| 367 | + |
| 368 | + <div class="card"> |
| 369 | + <div class="card-body"><ol> |
| 370 | +<li><strong>Gauss’ Law</strong>:</li> |
| 371 | +</ol> |
| 372 | +<p>$$ \nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0} $$</p> |
| 373 | +<ol start="2"> |
| 374 | +<li> |
| 375 | +<p><strong>Gauss’ Law for Magnetism</strong>: |
| 376 | +$$ \nabla \cdot \mathbf{B} = 0 $$</p> |
| 377 | +</li> |
| 378 | +<li> |
| 379 | +<p><strong>Maxwell-Faraday Equation</strong>:</p> |
| 380 | +</li> |
| 381 | +</ol> |
| 382 | +<p>$$ \nabla \times \mathbf{E} = \frac{\partial \mathbf{B}}{\partial t} $$</p> |
| 383 | +<ol start="4"> |
| 384 | +<li><strong>Ampère’s circuital law</strong>:</li> |
| 385 | +</ol> |
| 386 | +<p>$$ \nabla \times \mathbf{B} = \mu_0 \left( \mathbf{J} + \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right) $$</p> |
| 387 | +</div> |
342 | 388 | </div>
|
343 | 389 |
|
344 | 390 | </div>
|
|
0 commit comments