-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBest Meeting Point.py
47 lines (36 loc) · 1.34 KB
/
Best Meeting Point.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
'''
A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|.
Example:
Input:
1 - 0 - 0 - 0 - 1
| | | | |
0 - 0 - 0 - 0 - 0
| | | | |
0 - 0 - 1 - 0 - 0
Output: 6
Explanation: Given three people living at (0,0), (0,4), and (2,2):
The point (0,2) is an ideal meeting point, as the total travel distance
of 2+2+2=6 is minimal. So return 6.
'''
class Solution(object):
def minTotalDistance(self, grid):
"""
:type grid: List[List[int]]
:rtype: int
"""
rows, cols = self.getRowsCols(grid)
return self.getDis(rows, rows[len(rows) // 2]) + self.getDis(cols, cols[len(cols) // 2])
def getRowsCols(self, grid):
rows = []
cols = []
for r in xrange(len(grid)):
for c in xrange(len(grid[r])):
if grid[r][c] == 1:
rows.append(r)
cols.append(c)
return sorted(rows), sorted(cols)
def getDis(self, points, median):
res = 0
for p in points:
res += abs(p - median)
return res