-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBest Time to Buy and Sell Stock III.py
52 lines (38 loc) · 1.53 KB
/
Best Time to Buy and Sell Stock III.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
'''
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most two transactions.
Note: You may not engage in multiple transactions at the same time (i.e., you must sell the stock before you buy again).
Example 1:
Input: [3,3,5,0,0,3,1,4]
Output: 6
Explanation: Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.
Example 2:
Input: [1,2,3,4,5]
Output: 4
Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are
engaging multiple transactions at the same time. You must sell before buying again.
Example 3:
Input: [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.
'''
class Solution(object):
def maxProfit(self, prices):
"""
:type prices: List[int]
:rtype: int
"""
if len(prices) < 2:
return 0
k = 2
buy = [float('-inf') for i in xrange(k)]
sell = [0 for i in xrange(k)]
for x in prices:
buy[0] = max(buy[0], -x)
sell[0] = max(sell[0], x + buy[0])
for i in xrange(1, k):
buy[i] = max(buy[i], sell[i-1] - x)
sell[i] = max(sell[i], x + buy[i])
return sell[-1]